Synthesis of *iso*-epoxy-amphidinolide N and *des*-epoxy-caribenolide I structures. Initial forays

K. C. Nicolaou,*a,b William E. Brenzovich,a Paul G. Bulger and Tasha M. Francis

Received (in Pittsburgh, PA, USA) 10 February 2006, Accepted 27th March 2006 First published as an Advance Article on the web 26th April 2006 DOI: 10.1039/b602020h

Two strategies for the projected total synthesis of the phenomenally potent antitumour macrolides amphidinolide N (1) and caribenolide I (2) are described. The title compounds are introduced as challenging and unique targets for chemical synthesis, and their retrosynthetic analysis is presented. The synthesis of the four defined key building blocks (10, 39, 67 and 72), required for the construction of amphidinolide N (1), in their enantiomerically pure forms, is described, followed by the coupling of 10, 39 and 72 through hydrazone alkylation processes to generate the complete C6–C29 carbon framework of the target compound (1). Fusion of the remaining C1–C5 sector (72) onto the molecule by metathesis-based methods was unsuccessful, resulting in the adoption of a second-generation strategy which called for the employment of one of the array of palladium-catalysed cross-coupling reactions to generate the C5–C6 carbon–carbon bond. Vinyl bromide 125, representing the C6–C29 skeleton of caribenolide I (2), was prepared through the sequential alkylation of hydrazone 10 with bromide 116 and iodide 55, but failed to engage in the appropriate cross-coupling reaction with a variety of C1–C4 partners. Despite these setbacks, the information gleaned from these endeavours was to prove invaluable in laying the foundation for the eventual successful approach to the macrocyclic structures of amphidinolide N (1) and caribenolide I (2).

Introduction

Tel: 858-784-2400

In recent years, a remarkable array of structurally diverse and biologically active secondary metabolites has been isolated from a variety of marine organisms, such as fish, algal blooms and sponges.1 It has been found that marine microorganisms, such as bacteria and dinoflagellates, are the true producers of many of these novel substances, through association in a symbiotic relationship with a larger host.² One such example of this phenomenon is the case of the amphidinolides, a class of macrolide natural products isolated from cultured extracts of Amphidinium sp., the latter being symbiotic dinoflagellates harvested from inside cells of marine acoel flatworms Amphiscolops sp. collected from coral reefs off the coast of Okinawa. Largely through the sterling efforts of the Kobayashi group, the number of identified members of this ever-expanding family of chemically unique macrolides, which possess a variety of backbone molecular architectures and macrocyclic ring-sizes (12–29-membered), currently stands at more than 30.3 In addition to their unprecedented structures, most of the individual members of this natural product class have been shown to exhibit cytotoxicity against several mammalian cancer cell lines in vitro, with activities that can be loosely defined as ranging from good (IC₅₀ < 10 μ M) to excellent (IC₅₀ < 1 nM). This combination of intriguing molecular structure and biological properties has prompted a flurry of activity directed towards the laboratory synthesis of these compounds, resulting in several total syntheses⁴⁻⁹ and numerous partial syntheses¹⁰ of various members of the amphidinolide family.

The isolation of amphidinolide N (1, Fig. 1) was reported by Kobayashi and co-workers in 1994.11 Arguably the most structurally complex of this class of natural products (at least in terms of the number of stereocentres), amphidinolide N (1) was found to exhibit extraordinary cytotoxicity in vitro, with IC₅₀ values of 0.08 and 0.09 nM against the murine lymphoma L1210 and human epidermoid carcinoma KB-31 cell lines, respectively. This level of activity is at least an order of magnitude greater than the next most potent members of the amphidinolide family, namely amphidinolides B (3, Fig. 1) and H (4). Indeed, amphidinolide N (1) is one of the most potent antitumour substances discovered to date, with activity levels rivalling those of the spongistatins. 12 Unfortunately, further studies into the efficacy of amphidinolide N (1) as a potential therapeutic agent have been precluded by the extremely limited amounts of material that could be isolated from the Amphidinium sp. cultures. The relative inaccessibility of the natural product has also hampered progress towards even a complete stereochemical assignment. Although the relative stereochemistry of the C14-C19 region of amphidinolide N (1) was tentatively assigned to be as shown in Fig. 1 on the basis of NOESY data,¹¹ the configurations of the remaining chiral centres, as well as the absolute configuration of the molecule, has so far not yet been determined.

In the year following the disclosure of amphidinolide N (1), the isolation of caribenolide I (2, Fig. 1) from cultured extracts of an *Amphidinium* sp. (which in this case was a free-swimming, rather than symbiont, dinoflagellate) was reported by Shimizu and co-workers.¹³ Discovered during the course of screening for

[&]quot;Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, USA. E-mail: kcn@scripps.edu; Fax: 858-784-2469;

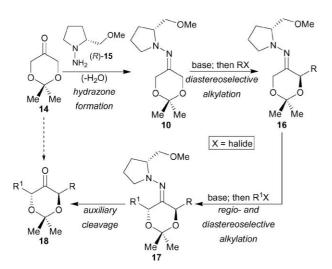
^bDepartment of Chemistry and Biochemistry, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093, USA

$$\begin{array}{c} & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & \\ & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & \\ & &$$

Fig. 1 Structures of amphidinolide N (1), caribenolide I (2), amphidinolide B (3) and amphidinolide H (4).

potent antineoplastic agents, caribenolide I (2) is clearly related biogenetically to amphidinolide N (1). Caribenolide I (2) and amphidinolide N (1) share an identical carbon–carbon connectivity, with the sole structural difference between the two molecules being the presence of a tetrahydrofuran ring (formally the result of an intramolecular dehydration between the C21 and C24 hydroxy groups) in the former. The biogenetic relationship and striking structural homology between caribenolide I (2) and amphidinolide N (1) suggests that the stereochemical relationships are conserved between the two molecules. However, since neither the relative nor absolute stereochemistry of caribenolide I (2) could be determined from the meagre amounts of material that could be procured from the producing organism, as was the case with amphidinolide N (1), this postulate remains unconfirmed. Caribenolide I (2) was found to show potent cytotoxic activity against the human colon cancer cell line HCT-116, with an IC₅₀ value (1.6 nM) more than 100 times smaller than that of amphidinolide B (3). Importantly, this excellent activity was retained against the corresponding drug-resistant HCT-116/VM-46 cell line. Furthermore, caribenolide I (2) displayed activity in vivo against murine tumour P388 (T/C = 150 at a dose of 0.03 mg kg⁻¹ body weight). Caribenolide I (2) would therefore also appear to be a promising anticancer therapeutic lead, but again the scarcity of material has prevented more detailed studies, a problem exacerbated by the fact that no more of the originally isolated sample remains, with it all having been consumed in the preliminary biological testing.14

Reports of synthetic studies on amphidinolide N (1) and caribenolide I (2) are notable only for their complete absence. We therefore embarked on a program to address the lack of information on these two remarkable targets with, initially, three main goals: (1) to develop practical synthetic routes to the core frameworks of both compounds 1 and 2, (2) to obtain information regarding the identity of the relative and absolute stereochemistries of the natural products, and (3) to supply viable quantities of materials, both of the natural products themselves and also their analogues, for further biological investigations. In this article, and in the following paper in this issue, ¹⁵ we present a full account of our work in this area thus far.


Results and discussion

From the outset, it was anticipated that the C4-C5 allylic epoxide unit present within both amphidinolide N (1) and

caribenolide I (2) would prove to be the most delicate functionality contained within these molecules. In particular, the ability of this motif to survive standard global deprotection conditions was deemed to be questionable at best. It was therefore proposed to install the epoxide group in the final step of the synthesis, leading to, in the case of amphidinolide N (1), the protecting group-free diene 5 [Scheme 1(a)] as the direct precursor of the target molecule. Macrolide 5 would, in turn, be derived from compound 6, which attracted our attention due to the possibility of exploiting either an enyne cross-metathesis¹⁶ or an enyne ring-closing metathesis macrocyclisation¹⁷ reaction to generate its 1,3-diene system. These reactions have been very much under-utilised in target-oriented synthesis compared to their more prestigious alkene-based siblings, 18 yet offer a potentially convenient access to the characteristic 1,3-disubstituted 1,3-diene system in compound 6. Thus, 6 could be derived from alkyne 7 and alkene 8 either by enyne cross-metathesis followed by macrolactonisation, or by intermolecular esterification followed by an enyne ring-closing metathesis macrocyclisation. The C14-C16 subunit of alkyne 7 comprises a masked 1,3-dihydroxyketone derivative, allowing for two further points of disconnection as shown, to give bromide 9, hydrazone 10 and iodide 11. In the forward synthetic direction, these three fragments would be unified by sequential alkylation reactions of hydrazone 10. If successful, this would represent the most advanced application to date of the protocol developed by the Enders group for the enantioselective synthesis of anti-disubstituted 1,3-dihydroxyacetone derivatives, the basic principles of which are illustrated in Scheme 2.19 A similar retrosynthetic analysis for caribenolide I (2) then simply requires the replacement of iodide 11 with the corresponding tetrahydrofuran 13 [Scheme 1(b)]. The proposed routes to 1 and 2 were thus designed to have a high degree of flexibility and convergency. Given the uncertainties regarding the stereochemistry of the target compounds (1 and 2), it would be necessary that the routes to the individual fragments 9, 11 and 13 be amenable to the production of any one of the possible stereoisomers.

In the absence of overwhelming evidence to favour any one particular stereoisomer of the natural products, the stereoselective routes to fragments **9**, **11** and **13** were designed, initially, based upon the perceived relative ease of synthesis. The synthesis of the amphidinolide N C17–C29 fragment **39** is illustrated in Scheme 3, and began with the protection of commercially available (S)-(-)-glycidol **19** as the corresponding trityl ether **20** (88%). The copper(1)-catalysed opening of epoxide **20** using n-propylmagnesium bromide proceeded regioselectively²¹ and in

Scheme 1 Retrosynthetic analysis of (a) amphidinolide N (1) and (b) caribenolide I (2): enyne metathesis approach.

Scheme 2 The Enders hydrazone alkylation approach to the enantioselective synthesis of α,α' -disubstituted 1,3-dihydroxyketone derivatives (18).

excellent yield (97%) to afford secondary alcohol 21. Conversion of alcohol 21 to the corresponding PMB ether (22) and subsequent unmasking of the primary hydroxy group to furnish 23 was followed by Swern oxidation to give aldehyde 24 (73% overall for the three-step sequence). Chelation-controlled allylation of aldehyde 24, using conditions reported by Keck and Boden,²² gave homoallylic alcohol 26 as the sole detectable stereoisomer (presumably as the result of the addition to the chelated aldehyde intermediate 25) in nearly quantitative yield. It is important to note that the diastereofacial selectivity of this reaction could, if desired, be reversed by using THF as the solvent instead of Et₂O.²² Protection of alcohol **26** as the corresponding TBS ether 27 was followed by regioselective hydroboration/oxidation to give primary alcohol 28 and subsequent oxidation to aldehyde 29. Brown allylation²³ of aldehyde 29 proceeded with >95% diastereoselectivity to install the C21 stereocentre in alcohol 30 under reagent control. Silyl ether protection $(30 \rightarrow 31)$ and then ozonolysis of the terminal alkene provided aldehyde 32, which was subjected to another three-step sequence of Brown allylation $(32 \rightarrow 33)$, protection $(33 \rightarrow 34)$ and ozonolysis to yield aldehyde 35, with an average yield of 92% for the five-step sequence. Reduction of aldehyde 35 with NaBH₄ gave primary alcohol 36 (98%), which was converted into iodide 37 under standard conditions (I₂, PPh₃, imidazole, 98%). Completion of the synthesis

Scheme 3 Synthesis of amphidinolide N C17–C29 fragment 39. Reagents and conditions: a) TrCl (1.1 equiv.), Et₃N (2.0 equiv.), CH₂Cl₂, $0 \rightarrow 25$ °C, 24 h, 88%; b) *n*-PrMgBr (2.0 equiv.), CuI (0.2 equiv.), THF, -45 °C, 80 min, 97%; c) NaH (1.5 equiv.), THF, $0 \rightarrow 25$ °C, 1 h, then PMBCl (1.5 equiv.), TBAI (0.02 equiv.), $45 \rightarrow 55$ °C, 36 h, 82%; d) TsOH·H₂O (0.1 equiv.), MeOH, 25 °C, 20 min, 90%; e) DMSO (3.0 equiv.), (COCl)₂ (1.5 equiv.), CH₂Cl₂, -78 °C, 20 min, then 23, -78 °C, 30 min, then Et₃N (6.0 equiv.), $-78 \rightarrow 25$ °C, 1 h, 99%; f) allyltributyltin (1.7 equiv.), MgBr₂·OEt₂ (1.6 equiv.), Et₂O, 0 °C, 3 h, 99%; g) TBSCl (1.7 equiv.), imidazole (2.5 equiv.), 4-DMAP (cat.), CH₂Cl₂, 16 h, 95%; h) BH₃·SMe₂ (4.0 equiv.), THF, $0 \rightarrow 25$ °C, then 3 M aq. NaOH, H₂O₂ (35% in H₂O), $0 \rightarrow 25$ °C, 16 h, 85%; i) DMSO (2.8 equiv.), (COCl)₂ (1.4 equiv.), CH₂Cl₂, -78 °C, 20 min, then 28, -78 °C, 30 min, then Et₃N (5.6 equiv.), $-78 \rightarrow 25$ °C, 1 h, 93%; j) allylmagnesium bromide (2.1 equiv.), (+)-Ipc₂BOMe (2.1 equiv.), Et₂O, $-78 \rightarrow 25$ °C, 75 min, then 29, $-78 \rightarrow 0$ °C, 3 h, then 3 M aq. NaOH, 35% aq. H₂O₂, $0 \rightarrow 25$ °C, 16 h, 90%; k) TBSCl (2.6 equiv.), imidazole (3.6 equiv.), 4-DMAP (cat.), CH₂Cl₂, 7 h, 89%; l) O₃, CH₂Cl₂, -78 °C, then PPh₃ (1.3 equiv.), $-78 \rightarrow 25$ °C, 16 h, 95%; n) TBSCl (2.0 equiv.), imidazole (4.0 equiv.), 4-DMAP (cat.), CH₂Cl₂, 16 h, 95%; o) O₃, CH₂Cl₂, -78 °C, then PPh₃ (1.3 equiv.), $-78 \rightarrow 25$ °C, 16 h, 95%; n) TBSCl (2.0 equiv.), imidazole (4.0 equiv.), 4-DMAP (cat.), CH₂Cl₂, 16 h, 95%; o) O₃, CH₂Cl₂, -78 °C, then PPh₃ (1.3 equiv.), $-78 \rightarrow 25$ °C, 16 h, 90%; p) NaBH₄ (2.0 equiv.), MeOH, 0 °C, 10 min, 98%; q) I₂ (2.0 equiv.), pyridine (12.0 equiv.), 4-DMAP (cat.), CH₂Cl₂, $0 \rightarrow 25$ °C, 30 min, 98%; r) DDQ (1.7 equiv.), CH₂Cl₂/pH 7 aq. buffer, 25 °C, 1 h, 90%; s) PivCl (12.0 equiv.), pyridine (12.0 equiv.), 4-DMAP (cat.), CH₂Cl₂, $0 \rightarrow 25$ °C, 22 h, 65%. DDQ = 2,3-dichloro-5,6-dicyano-1,4-ben

of fragment **39** was achieved by selective cleavage of the PMB group followed by reprotection of the resulting alcohol (**38**) as the corresponding pivalate (59% for the two steps).

Natural L-glutamic acid (40, Scheme 4) was the chosen starting material for the synthesis of the caribenolide I C17–C29 fragment 55, and was converted in moderate yield (48%) into lactone 41 ²⁴ (with retention of stereochemistry) *via* diazotisation/internal displacement. Formation of acid chloride 42 ²⁵ was followed by the careful addition of *n*-butylmagnesium bromide at low temperature, resulting in chemoselective addition to yield ketone 43 (82% from 41). ²⁶ Reduction of the ketone group in compound 43 using K-Selectride® then furnished alcohol 45 as a single stereoisomer in 71% yield, presumably *via* a Felkin–Anh²⁷ mode of addition (*cf.* 44); ²⁶ protection of the resulting hydroxy group as the

corresponding PMB ether (46) was best effected employing PMB-trichloroacetimidate (47) and a catalytic amount of La(OTf)₃ in toluene (91%).²⁸ Reduction of lactone 46 using DIBAL-H then gave lactol 48a, which could be converted into either methyl furanoside 48b (77% from 46) or anomeric acetate 48c (80% from 46). The Lewis acid-catalysed allylation of 48a–c to give the (21*S*)-tetrahydrofuran product 49 was then investigated (see Table 1). Initial studies were performed using allyltrimethylsilane and BF₃·OEt₂ in CH₂Cl₂ (Table 1, entries 1–4). With lactol 48a as the substrate, allylation was accompanied by cleavage of the PMB group to give alcohol 57 as the isolated product in moderate yield, albeit as a single stereoisomer (entry 1). With methyl furanoside 48b, a similar outcome was observed if the reaction was allowed to warm to ambient temperature (entry 2), but if it was maintained

Table 1 Lewis acid-catalysed allylation of tetrahydrofuran substrates 48a, 48b and 48c "

Entry	48	Lewis acid (equiv.)	Temperature/°C	Time	Yield (%)b	Diastereomeric ratio ^c
1	a	BF ₃ ·OEt ₂ (3.0)	$-78 \rightarrow 25$	3 h	40 (57)	_
2	b	$BF_3 \cdot OEt_2 (1.1)$	$-78 \rightarrow 25$	3 h	71 (57)	_
3	b	$BF_3 \cdot OEt_2 (1.1)$	-78	6 h	$68 (49 + 56)^d$	2.5:1
4	c	$BF_3 \cdot OEt_2 (1.1)$	-78	45 min	$72(49 + 56)^d$	3:1
5	c	$MgBr_{2}(2.5)$	0	4 h	60 (48a)	_
6	c	$ZnBr_{2}$ (2.5)	$-20 \rightarrow 25$	48 h	e	_
7	c	TMSOTf(0.1)	-78	30 min	$96 (49 + 56)^d$	3.5:1
8	c	$La(OTf)_3 (0.15)$	-78	3 h	$77(49 + 56)^d$	3:1

^a All reactions were performed using 3.0 equiv. of allyITMS and at a substrate concentration of 0.1 M in CH₂Cl₂. ^b Isolated yield after flash chromatography. ^c Ratio of **49** : **56**, determined from the ¹H-NMR spectrum of the crude reaction mixture. ^d Combined yield of **49** and **56**. ^c Reaction did not proceed to completion.

Scheme 4 Synthesis of caribenolide I C17–C29 fragment 55. Reagents and conditions: a) NaNO₂ (1.2 equiv.), 2 N aq. H₂SO₄, H₂O, 25 °C, 21 h, 48%; b) (COCl)₂ (1.3 equiv.), DMF (cat.), CH₂Cl₂, 25 °C, 3 h; c) n-BuMgBr (0.95 equiv.), THF, -78 °C, 1.5 h, 82% (two steps); d) K-Selectride® (1.1 equiv.), THF, $-78 \rightarrow -10$ °C, 3 h, 71%; e) 47 (1.6 equiv.), La(OTf)₃ (0.05 equiv.), toluene, 0 °C, 10 min, 91%; f) DIBAL-H (1.1 equiv.), toluene, -78 °C, 30 min, 89%; g) 2,2-DMP (1.5 equiv.), PPTS (0.1 equiv.), MeOH, 25 °C, 16 h, 87%; h) Ac₂O (1.4 equiv.), Et₃N (2.1 equiv.), 4-DMAP (0.03 equiv.), CH₂Cl₂, 25 °C, 90 min, 90%; i) (see Table 1); j) O₃, CH₂Cl₂, -78 °C, then PPh₃ (1.7 equiv.), $-78 \rightarrow 25$ °C, 1 h, 90%; k) allylmagnesium bromide (2.3 equiv.), (+)-Ipc₂BOMe (2.3 equiv.), Et₂O, $-78 \rightarrow 25$ °C, 1.5 h, then 50, -78 °C, 3 h, then 3 M aq. NaOH, 35% aq. H₂O₂, $0 \rightarrow 25$ °C, 16 h, 69%; l) TBSCl (1.5 equiv.), imidazole (2.0 equiv.), CH₂Cl₂, 16 h, 90%; m) O₃, CH₂Cl₂, -78 °C, then PPh₃ (1.3 equiv.), $-78 \rightarrow 25$ °C, 1 h, 89%; n) NaBH₄ (1.5 equiv.), MeOH, 0 °C, 15 min, 97%; q) I₂ (2.0 equiv.), PPh₃ (2.0 equiv.), imidazole (4.0 equiv.), C₆H₆, 25 °C, 30 min, 97%. DIBAL-H = diisobutylaluminium hydride; 4-DMAP = 4-dimethylaminopyridine; 2,2-DMP = 2,2-dimethoxypropane; Ipc = isopinocampheyl; K-Selectride® = potassium tri-sec-butylborohydride; PPTS = pyridinium para-toluenesulfonate; TBS = tert-butyldimethylsilyl.

at -78 °C then the PMB group remained intact (entry 3), with a 2.5 : 1 mixture of **49** : **56** being formed in 68% overall yield. That the major product was indeed the C12–C24 *trans*-isomer (**49**) was confirmed by comparative nOe analysis of **49** and **56**, and is in accord with literature precedent for similar systems. Pacetate **48c** proved to be a superior substrate in this regard (entry 4),

requiring a much shorter reaction time than the corresponding methoxy derivative. Having identified acetate **48c** as the best substrate for this reaction, a cursory examination of different Lewis acids (entries 5–8) led to the identification of TMSOTf as the reagent of choice (entry 7). Under these conditions, the desired (21*S*)-allylated product **49** could be isolated in 75% yield. The

diastereoselectivity of the allylation was relatively independent of both the Lewis acid (entries 4, 7 and 8) and the solvent used (results not shown). Alkene **49** was then elaborated to give iodide **55** (Scheme 4) through a sequence of six further transformations that proceeded through intermediates **50–55** in 47% overall yield.

The synthesis of allylic bromide fragment 67 (Scheme 5), common to both the amphidinolide N and caribenolide I proposed routes, began with known alcohol 58, which was prepared by the method of Drouet and Theodorakis. Swern oxidation of alcohol 58 to aldehyde 59 (96%) was followed by addition of the lithium anion of TMS-acetylene to give a 1:2.3 mixture of (7R)-: (7S)-epimers 60:61, which were separable by flash chromatography, in a combined yield of 98%. The major (7S)-isomer (61) could be converted into the (7R)-isomer (68) using IBX (Swern or PCC oxidations proceeded in much lower yield) and subsequent Noyori asymmetric transfer hydrogenation employing ruthenium catalyst (69), as is illustrated in Scheme 6. This served to both confirm the identities of (60) and (61), and provide more efficient access to

Scheme 5 Synthesis of amphidinolide N/caribenolide I C6–C13 coupling partner 67: enyne metathesis approach. *Reagents and conditions*: a) DMSO (3.6 equiv.), (COCl)₂ (1.8 equiv.), CH₂Cl₂, -78 °C, 20 min, then 58, -78 °C, 30 min, then Et₃N (7.2 equiv.), $-78 \rightarrow 25$ °C, 1 h, 96%; b) *n*-BuLi (1.5 equiv.), trimethylsilylacetylene (1.5 equiv.), THF, -78 °C, 20 min, then 59, THF, $-78 \rightarrow 0$ °C, 2 h, 98% (61 : 60, 2.3 : 1); c) TBSCl (1.7 equiv.), imidazole (3.5 equiv.), 4-DMAP (cat.), CH₂Cl₂, 2 h, 93%; d) O₃, CH₂Cl₂, -78 °C, then PPh₃ (1.7 equiv.), $-78 \rightarrow 25$ °C, 1 h, 98%; e) (carbethoxyethylidene)triphenylphosphorane (1.6 equiv.), C₆H₆, 70 °C, 16 h, 98%; f) DIBAL-H (2.0 equiv.), THF, 0 °C, 30 min, 99%; g) MsCl (3.0 equiv.), Et₃N (4.0 equiv.), THF, 0 $\rightarrow 25$ °C, 1 h, then LiBr (10.0 equiv.), 45 min, 89%. DIBAL-H = diisobutylaluminium hydride; 4-DMAP = 4-dimethylaminopyridine; Ms = methanesulfonyl; TBS = *tert*-butyldimethylsilyl.

Scheme 6 Noyori asymmetric hydrogenation of acetylenic ketone **68**. *Reagents and conditions*: a) IBX (1.5 equiv.), DMSO, 25 °C, 2 h, 78%; b) **69** (0.01 equiv.), *i*-PrOH, 25 °C, 16 h, 84%. IBX = *ortho*-iodoxybenzoic

the (7R)-isomer **60**. Continuing with the synthesis of bromide **67** (Scheme 5), (7S)-alcohol **61** was elaborated through intermediates **62** and **63** to give ester **64**, with the C11–C12 trisubstituted alkene being installed through an *E*-selective Wittig reaction, in 89% overall yield. Reduction of the ester group in compound **64** using DIBAL-H then provided alcohol **65** in excellent yield (99%). The final step in the sequence required the conversion of the allylic primary hydroxy group into the corresponding bromide; of the many methods examined to effect this transformation, the most reliable and efficient involved the formation of a mesylate intermediate followed by displacement with bromide anion in a one-pot procedure (Scheme 5, **65** \rightarrow **66** \rightarrow **67**, 89%).³²

To complete the assembly of the fragments required for the enyne metathesis-based approaches, an Evans aldol reaction of *N*-acyloxazolidinone **70** with acrolein afforded alcohol **71** (Scheme 7),³³ from which a number of potential C1–C4 alkene coupling partners (**72**–**78**) were prepared as shown.

The reported method for the synthesis of hydrazone 10 involves refluxing ketone 14 and hydrazine (R)-15 together in benzene under Dean-Stark conditions for 20 h.19 We have found that a more convenient procedure, particularly for small-scale applications, involves stirring the two components together in CH₂Cl₂ and in the presence of molecular sieves at ambient temperature for 2 h (Scheme 8). The sequential alkylation of hydrazone 10, firstly with bromide 67 (see Scheme 5) to give compound 79 and then with amphidinolide N C17-C29 iodide fragment 39 (see Scheme 3), was followed by cleavage of the hydrazone auxiliary under mild conditions (aqueous oxalic acid)³⁴ to give ketone 81 in good overall yield (55% for the three steps). These key alkylation steps performed admirably, provided that the following modifications of literature protocols¹⁹ were implemented: (1) LDA was used as the base (instead of t-BuLi); (2) the reactions were quenched soon after alkylation was judged to be complete (<1 h at -78 °C) by TLC analysis, rather than being allowed to warm to ambient temperature overnight; and (3) the first alkylated intermediate (79) was purified by flash column chromatography prior to the second step. These fragment coupling reactions allowed for the rapid assembly of the bulk of the carbon skeleton of amphidinolide N(1)in a concise and efficient manner. Each alkylation step was highly

Scheme 7 Synthesis of amphidinolide N/caribenolide I C1–C5 coupling partners: enyne metathesis approach. *Reagents and conditions*: a) $n\text{-Bu}_2\text{BOTf}$ (1.2 equiv.), $i\text{-Pr}_2\text{NEt}$ (1.4 equiv.), CH_2Cl_2 , 0 °C, 10 min, then acrolein, $-78 \to 0$ °C, 75 min, 93%; b) NaOMe (1.4 equiv.), MeOH, 0 °C, 40 min, 51%; c) TBSCl (2.0 equiv.), imidazole (4.0 equiv.), 4-DMAP (cat.), CH $_2\text{Cl}_2$, 16 h, 95%; d) TBSCl (3.0 equiv.), imidazole (6 equiv.), 4-DMAP (cat.), CH $_2\text{Cl}_2$, 16 h, 94%; e) LiOH (4.0 equiv.), 35% aq. H $_2\text{O}_2$ (8.0 equiv.), THF–H $_2\text{O}$ (4 : 1), 0 °C, 5 h, 92%; f) LiBH $_4$ (3.0 equiv.), THF–MeOH (50?: 1), 0 \to 25 °C, 16 h, 70%; g) PivCl (2.0 equiv.), pyridine (3.0 equiv.), 4-DMAP (cat.), CH $_2\text{Cl}_2$, 25 °C, 16 h, 90%; h) TBAF (2.1 equiv.), THF, 25 °C, 3.5 h, 89%. 4-DMAP = 4-dimethylaminopyridine; Piv = pivaloyl; TBAF = tetra-n-butylammonium fluoride; TBS = tert-butyldimethylsilyl; Tf = trifluoromethanesulfonyl.

stereoselective (dr > 95 : 5 as judged by ¹H-NMR spectroscopic analysis), with ketone **81** being isolated in stereochemically pure form after flash column chromatography.

From ketone **81**, protecting group adjustments were required before the enyne metathesis reactions could be attempted. Treatment of ketone **81** with TsOH in MeOH resulted in cleavage of the acetonide and the five TBS protecting groups, and subsequent ketalisation to give pyranose **82** as an inseparable 1.3: 1 mixture of anomers in 64% yield (Scheme 9). Reprotection of the free hydroxy groups then gave pyranoside **83** (54%), from which the terminal alkyne was liberated by removal of the TMS group to give compound **84** (84%). Finally, the pivalate group was excised using Super Hydride®, yielding alcohol **85** (74%). An alternative alkyne coupling partner, compound **86**, was prepared directly from pyranose **82** by cleavage of the alkynyl TMS group in an unoptimised yield of 30%, to provide a substrate which lacks the steric congestion imposed by the five bulky TBS groups.

With alkynes 85 and 86 in hand, the stage was set for the enyne cross-metathesis reactions. Unfortunately, and despite numerous attempts and extensive variation of the reaction parameters, cross-metathesis between either 85 or 86 and any one of 72, 73, or

Scheme 8 Coupling of fragments 10, 39 and 67: enyne metathesis approach. Reagents and conditions: a) 14 (1.1 equiv.), 4 Å MS, CH_2Cl_2 , 25 °C, 2 h, 98%; b) LDA (1.2 equiv.), THF, -78 °C, 1.5 h, then 67 (1.2 equiv.), -78 °C, 1 h, 84%; c) LDA (1.2 equiv.), THF, -78 °C, 2 h, then 39 (1.2 equiv.), -78 °C, 4 h; d) sat. aq. (CO_2Hl_2 , Et_2O , 25 °C, 40 h, 64% (two steps). LDA = lithium diisopropylamide; MS = molecular sieves.

75–78 was never observed (Scheme 10). Eventually, it was found that, when alkyne 85 was exposed to second-generation ruthenium carbene 88 ³⁵ in CH₂Cl₂ saturated with ethylene³⁶ under microwave irradiation,³⁷ cross-metathesis did occur cleanly, to give diene 91 in 80% yield. Disappointingly, however, and for reasons that are presently unclear, diene 91 proved to be resistant to alkene cross-metathesis with any of the C1–C4 terminal alkene coupling partners 72, 73, or 75–78.

With cross-metathesis proving not to be a viable means to establish the 1,3-diene system, it was decided to reverse the order of the fragment coupling and ring-closure steps. Thus, as shown in Scheme 11, alcohol 85 underwent a rapid esterification with acid 75 under Yamaguchi conditions³⁸ to give enyne 94 (92%), which contains all of the carbon atoms required to reach the target natural product (1). However, a similar story unfolded with regard to the ring-closing metathesis macrocyclisation as was seen with the attempted cross-metathesis processes. Enyne 94 could not be cyclised directly to generate macrocyclic compound 95, but was cleanly converted into diene 96 in 60% yield upon microwave irradiation in the presence of catalyst 88 under an ethylene atmosphere. Diene 96 was apparently all but inert to further productive metathesis events, failing either to cyclise to the corresponding macrocycle (95) or to undergo a significant degree of oligomerisation, despite prolonged exposure (under microwave irradiation or purely thermal conditions) to the ruthenium-based catalysts 87–89 or the highly active Schrock molybdenum-based catalyst 97.39

Scheme 9 Elaboration of ketone 81. Reagents and conditions: a) TsOH·H₂O (2 × 0.5 equiv.), MeOH–CH₂Cl₂ (4 : 1), 25 °C, 20 h, 64%; b) TBSOTf (7.5 equiv.), 2,6-lutidine (15.0 equiv.), CH₂Cl₂, $-78 \rightarrow 0$ °C, 1.5 h, 54%; c) K₂CO₃ (10.0 equiv.), MeOH–Et₂O (5 : 1), 25 °C, 4 h, 84%; d) Super Hydride® (4.0 equiv.), THF, 0 °C, 1.5 h, 74%; e) K₂CO₃ (10.0 equiv.), MeOH–Et₂O (4 : 1), 25 °C, 4 h, 30%. Super Hydride® = lithium triethylborohydride; Ts = 4-toluenesulfonyl.

In the light of the reluctance of envne 94 to undergo ring-closing metathesis macrocyclisation, it was proposed that a protecting group-free substrate could, potentially, adopt a more 'natural product-like' conformation that would be more amenable to ring-closure. Therefore, enyne 94 was treated with DDQ in a biphasic CH₂Cl₂/aqueous buffer solvent system to effect the selective cleavage of the PMB group in 89% yield (Scheme 12). Oxidation of the resulting alcohol (98) to the corresponding ketone (99) was most effectively carried out using the TPAP/NMO system⁴⁰ (76% yield), which avoided epimerisation of the sensitive C10 stereocentre. Global deprotection was then carried out by exposure of ketone 99 to 48% aq. HF in acetonitrile/CH₂Cl₂ at room temperature. Under these conditions, an inseparable 1:1 mixture of the desired hemiacetal 100 and the unexpected bicyclic acetal 101 was formed, a phenomenon which will be elaborated upon more fully in the following paper in this issue, 15 in 66% yield. To our dismay, however, the mixture of enynes 100 and 101 also failed to undergo ring-closing metathesis macrocyclisation, in this case to generate macrolide 102 (or the corresponding bicyclic acetal). This result was particularly galling in view of the fact that, had the ring-closure been successful, only one further step would have been required to complete the synthesis of the first stereoisomer of amphidinolide N (1).

At this point we began to consider alternative methods for the construction of the latent diene system contained within the C1–C13 sector of amphidinolide N (1) and caribenolide I (2), and reasoned that it could be accessed through a Stille coupling reaction⁴¹ between a vinyl bromide of generic structure 103 (Scheme 13) and a C1–C5 vinyl stannane fragment 104.

The synthesis of the vinyl bromide coupling partner began with the Evans aldol reaction of *N*-acyloxazolidinone **105** with

Scheme 10 Attempted enyne and alkene cross-metathesis fragment coupling processes. Reagents and conditions: a) 88 (2 × 0.05 equiv.), $CH_2=CH_2$ (1 atm), CH_2CI_2 , microwaves (100 W), 55 °C, 2 × 20 min and 1 × 50 min, 80%.

Scheme 11 Attempted envine and alkene ring-closing metathesis macrocyclisation processes. Reagents and conditions: a) 75 (5.0 equiv.), Et₃N (10.0 equiv.), 2.4,6-trichlorobenzoyl chloride 93 (5.0 equiv.), toluene, 25 °C, 2 h, then 85 (1.0 equiv.), 4-DMAP (cat.), 25 °C, 45 min, 92%; b) 88 (2 × 0.05 equiv.), CH₂=CH₂ (1 atm), CH₂Cl₂, microwaves (100 W), 55 °C, 2 × 20 min and 1 × 50 min, 60%. 4-DMAP = 4-dimethylaminopyridine.

Scheme 12 Global deprotection of alkyne 94, and attempted enyne ring-closing metathesis macrocyclisation. Reagents and conditions: a) DDQ (1.7 equiv.), CH₂Cl₂-pH 7 aq. buffer (2:1), 0 °C, 40 min, 89%; b) NMO (5.0 equiv.), 4 Å MS, CH₂Cl₂, 25 °C, 10 min, then TPAP (1.0 equiv.), 25 °C, 1.5 h, 76%; c) 48% aq. HF, MeCN–CH₂Cl₂ (8 : 1), 0 → 25 °C, 4 h, 66%. DDQ = 2,3-dichloro-5,6-dicyano-1,4-benzoquinone; MS = molecular sieves; NMO = 4-methylmorpholine *N*-oxide; TPAP = tetra-*n*-propylammonium perruthenate.

2-bromoacrolein 106,42 to afford the syn-aldol adduct 107 as a single stereoisomer in 82% yield (Scheme 14). Following the procedure of Crich et al.,43 treatment of compound 107 with zinc dust and solid ammonium chloride in methanol resulted in selective dechlorination to give the formal acetate aldol product 108 in 81% yield, with only a small amount (< 5%) of competing debromination. Silvl ether protection of the free hydroxy group in bromide 108 was followed by reductive cleavage

of the oxazolidinone chiral auxiliary from compound 109, and subsequent re-oxidation of the resulting primary alcohol (110) to the corresponding aldehyde (111, 72% from 108).44 A Brown crotylboration45 of aldehyde 111 then installed the C9 and C10 vicinal stereocentres in good yield (84%) and with >98% diastereoselectivity. Trityl tetrafluoroborate (see Scheme 4) was the optimum acid catalyst for the conversion of the resulting alcohol (112) to PMB ether 113 using the trichloroacetimidate method,46

Scheme 13 Revised retrosynthetic analysis of the amphidinolide N (1) and caribenolide I (2) C1–C13 unit: cross-coupling approach.

proving superior to either lanthanum triflate or PPTS. Selective ozonolysis of the terminal alkene in PMB ether 113 was followed by Wittig olefination of the crude aldehyde to give trisubstituted alkene 114 (58% for three steps from 112). Reduction of the ester group (114 \rightarrow 115, 87%) and subsequent bromination (92%) then completed the synthesis of C6–C13 vinyl bromide fragment 116.

The C1–C4 vinyl stannane coupling partner 121 was prepared in four steps from alkyne 117,⁴⁷ as shown in Scheme 15. Reductive cleavage of the oxazolidinone auxiliary gave diol 118 (58%), which was selectively tritylated at the primary hydroxy group to give secondary alcohol 119 in 96% yield. The latter was then treated with TBAF to effect the cleavage of the TBS group and afford alkyne 120 in 75% yield. Regioselective palladium-catalysed

Scheme 15 Synthesis of vinyl stannane coupling partner 121: cross-coupling approach. *Reagents and conditions*: a) LiBH₄ (2.5 equiv.), THF–MeOH (100 : 1), $0 \rightarrow 25$ °C, 3 h, 58%; b) TrCl (1.1 equiv.), Et₃N (1.6 equiv.), 4-DMAP (cat.), CH₂Cl₂, 25 °C, 8 h, 96%; c) TBAF (2.0 equiv.), THF, 25 °C, 2 h, 75%; d) PdCl₂(PPh₃)₂ (0.06 equiv.), *n*-Bu₃SnH (2.3 equiv.), THF, 25 °C, 61%. 4-DMAP = 4-dimethylaminopyridine; TBAF = tetra-*n*-butylammonium fluoride; Tr = triphenylmethyl.

hydrostannylation⁴⁸ of terminal alkyne **120** then yielded stannane **121** (61%).

Following the alkylation protocols established earlier, hydrazone 10 was smoothly coupled with bromide 116 to give compound 122 in 91% yield (Scheme 16). This time, the second alkylation was performed using the caribenolide I C17–C29 iodide fragment 55 to give, following acidic hydrolysis of the crude reaction mixture to effect the cleavage of the hydrazone auxiliary, the highly functionalised ketone 123 in good overall yield (70%). Treatment of ketone 123 with TsOH in methanol led to the formation of triol 124 (57%), which could be silylated using TESOTf and 2,6-lutidine to give the fully protected substrate 125 in 87% yield. Pyranose 124 was isolated as a single stereoisomer, indicating

Scheme 14 Synthesis of amphidinolide N/caribenolide I C6–C13 coupling partner 116: cross-coupling approach. *Reagents and conditions*: a) 105, i-Pr₂NEt (1.25 equiv.), n-Bu₂BOTf (1.1 equiv.), CH_2Cl_2 , -78 °C, 30 min, then 106 (3.0 equiv.), $-78 \rightarrow 25$ °C, 21 h, 82%; b) Zn (4.0 equiv.), NH_4Cl_3 (3.0 equiv.), MeOH, 25 °C, 6 h, 81%; c) TBSOTf (1.2 equiv.), 2,6-lutidine (1.3 equiv.), CH_2Cl_2 , $-78 \rightarrow 25$ °C, 2 h, 95%; d) LiBH₄ (2.5 equiv.), MeOH, $-78 \rightarrow 0$ °C, 3 h, 85%; e) Dess–Martin periodinane (1.2 equiv.), $NAHCO_3$, CH_2Cl_2 –DMSO (6:1), 25 °C, 1.5 h, 89%; f) KOt-Bu (1.5 equiv.), trans-2-butene (3.0 equiv.), trans-2-bu

Scheme 16 Coupling of fragments 10, 55 and 116, and attempted Stille couplings. Reagents and conditions: a) 10 (1.15 equiv.), LDA (1.15 equiv.), THF, -78 °C, 2.5 h, then 116, THF, -78 °C, 1 h, 91%; b) LDA (1.2 equiv.), THF, -78 °C, 1 h, then 55 (1.2 equiv.), THF, -78 °C, 1 h; c) sat. aq. (CO₂H)₂, Et₂O, 25 °C, 48 h, 70% (two steps); d) TsOH·H₂O (0.5 equiv.), MeOH–CH₂Cl₂ (5:1), 25 °C, 16 h, then Et₃N, 57%; e) TESOTf (5.0 equiv.), 2,6-lutidine (10.0 equiv.), CH_2Cl_2 , $-78 \rightarrow -10$ °C, 30 min, 87%. LDA = lithium diisopropylamide; TES = triethylsilyl; Tf = trifluoromethanesulfonyl; Ts = 4-toluenesulfonyl.

that only one anomer had been formed at the C15 position during the ketalisation step (123b \rightarrow 124). It was not possible to determine the configuration of this newly-formed chiral centre unambiguously, but we tentatively propose it to be the α -anomer, as depicted in Scheme 16. Thus, as is highlighted in Fig. 2(a), ROESY analysis of the TES-protected derivative 125 suggested

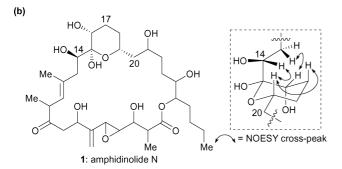


Fig. 2 Proposed stereochemistry of the C15–C19 tetrahydropyran system of (a) bromide 125, (b) amphidinolide N (1).

that the methoxy group occupies an axial position on the sixmembered ring, stabilised by the anomeric effect, whilst the bulky C15 and C19 side chains reside in equatorial positions. This is in contrast to the conformation proposed for the C14-C19 subunit of amphidinolide N 1 [Fig. 2(b)], in which the side chain at the C15 position adopts an axial position, and which is presumably stabilised by intramolecular hydrogen-bonding.11 Evidence for the conformation of 125 (and hence also that of 124) being as shown in Fig. 2(a) is based largely on the following features of the ROESY spectrum of 125: (1) an observable cross-peak between the C19 proton and the C15 methoxy group, and (2) the absence of observable cross-peaks between the C14 and C19 protons, and also between the C13 and C16 protons, with the latter two interactions both observed in the corresponding NOESY spectrum of amphidinolide N (1).11

Much to our chagrin, however, the coupling of vinyl stannane 121 and either of vinyl bromides 124 or 125 could not be effected under any one of a wide range of conditions (Scheme 16). The problem did not appear to lie with the vinyl stannane component (121) since, as shown in Scheme 17, this compound underwent cross-coupling with iodide 129 (prepared from the corresponding

Scheme 17 Stille coupling of iodide 129 with stannane 121. Reagents and conditions: a) TESC1 (1.2 equiv.), imidazole (2.5 equiv.), THF, 25 °C, 1.5 h, 45%; b) **121** (1.2 equiv.), $PdCl_2(PPh_3)_3$ (0.03 equiv.), THF, $25 \rightarrow 60$ °C, 24 h, 28%. TES = triethylsilyl.

alcohol **128** ⁴⁹) to give diene **130**, albeit in a low (unoptimised) yield of 28%. Furthermore, neither bromide **124** nor **125** could be induced to undergo cross-coupling with a variety of simpler, commercially available stannane reagents, such as tributyl(vinyl)tin.

Scheme 18 (a) Sonogashira coupling/alkyne reduction route to diene 130, (b) attempted Sonogashira couplings of bromides 124 or 125 with alkyne 120. Reagents and conditions: a) 120 (0.77 equiv.), PdCl₂(PPh₃)₂ (0.04 equiv.), CuI (0.08 equiv.), Et₃N (7.7 equiv.), THF, 25 °C, 3.5 h, 64%; b) Red-Al® (4.0 equiv.), Et₂O, 0 °C, 1 h, 98%. Red-Al® = sodium bis(2-methoxyethoxy)aluminium hydride.

An alternative cross-coupling-based route to the diene system would involve a Sonogashira reaction⁵⁰ between bromides **124** or **125** and an appropriately substituted alkyne, followed by (*E*)-selective reduction of the triple bond in the resulting enyne system. In principle, this route seemed promising, as evidenced by the two-step conversion of iodide **129** to diene **130**, *via* alkyne **131**, in 63% yield [Scheme 18(a)]. In practice, when applied to the more elaborate bromides **124** or **125**, this method foundered on the recalcitrance of these substrates towards undergoing the required sp²-sp³ coupling with alkyne **120** [Scheme 18(b)].

Mindful that the steric bulk associated with the complete C6-C29 carbon framework in bromides 124 or 125 may have been impeding oxidative addition of palladium(0) complexes into the C6-Br bond, cross-couplings were attempted on the simpler bromides 116, 134 and 135 (Scheme 19), but again to no avail. By now it was apparent that the intrinsic low reactivity of the C6bromide towards oxidative addition, most likely due to the steric hindrance imposed by the adjacent C7 stereocentre, was going to preclude palladium-catalysed cross-couplings on this substrate from being a viable route to the diene system. It was therefore attempted to convert bromide 135 into the more reactive iodide species (139). Lithium-halogen exchange (with the intention of quenching the resulting lithiated species with an electrophilic iodine source) resulted in the rapid destruction of the starting material, whilst the direct Cu(I)-promoted conversion⁵¹ of 135 to 139 was ineffectual. An alternative route to vinyl iodide 139 would have been to start from 2-iodoacrolein (140),52 and elaborate as for the corresponding 2-bromo compound (cf. Scheme 14). Unfortunately, this was not possible due to the extreme instability of iodide 140 with respect to polymerisation, which prevented its isolation in a form pure enough for the subsequent Evans aldol reaction to be successful. At this point the cross-coupling routes to the 1,3-diene system were abandoned, since an alternative route that was concurrently under investigation was found to successfully provide access to the required diene system. This methodology could subsequently be applied to generate the complete macrocyclic frameworks of both amphidinolide N (1) and caribenolide I (2), and will be discussed in the following paper in this issue.15

Conclusion

Amphidinolide N (1) and caribenolide I (2) are structurally unique, marine-derived macrolide natural products which exhibit outstanding antitumour activity *in vitro*. With all of the originally

Scheme 19 Attempted cross-couplings of C6–C13 vinyl bromide derivatives. Reagents and conditions: a) TBAF (1.5 equiv.), THF, $0 \rightarrow 25$ °C, 1 h, 83%; b) TBSCl (2.0 equiv.), imidazole (3.0 equiv.), CH₂Cl₂, 25 °C, 1.5 h, 97%. TBAF = tetra-n-butylammonium fluoride; TBS = tert-butyldimethylsilyl.

isolated materials having been exhausted in preliminary assays, total synthesis currently represents the only viable means to access further quantities of these natural products, in order to allow both further biological investigation and also proof of structure and a complete stereochemical determination. We have developed stereoselective routes to fragments representing the entire carbon framework of both target compounds 1 and 2. Construction of the 1,3-diene system embedded within key late-stage intermediates en route to both 1 and 2 has turned out to be a particularly challenging undertaking, with both metathesis- and cross-coupling-based procedures proving unsuccessful. Nevertheless, these synthetic forays have not only proven the enabling ability of the Enders hydrazone alkylation methodology to rapidly assemble the bulk of the molecular framework through fragment coupling reactions, but have also established potential end-game global deprotection manoeuvres. This intelligence gathering would prove to be invaluable in the revised strategy and final drive towards the macrocyclic frameworks of amphidinolide N (1) and caribenolide I (2), which is the subject of the following paper in this issue.¹⁵

Experimental

All reactions were carried out under an argon atmosphere with dry solvents under anhydrous conditions. Dry tetrahydrofuran (THF) and toluene were obtained by refluxing over sodiumbenzophenone for one h, followed by distillation under argon. Dry methylene chloride (CH₂Cl₂), 1,2-dichloroethane, acetonitrile and diisopropylamine were obtained by refluxing over calcium hydride for one h, followed by distillation under argon. Benzene and diethyl ether (Et₂O) were obtained by passing commercially available pre-dried, oxygen-free formulations through activated alumina columns. Reagents were purchased at the highest commercial quality and used without further purification, unless otherwise stated. Yields refer to chromatographically and spectroscopically (13C-NMR) homogeneous materials, unless otherwise stated. Solvents were removed under reduced pressure using a Büchi R114 Rotavapor. Final traces of solvent were removed from samples using a Welch 1402 N high vacuum pump with pressures below 2 mmHg. Reactions were monitored by thinlayer chromatography (TLC) carried out on glass sheets precoated with silica (E. Merck silica gel 60 F₂₅₄), which were visualised by the quenching of UV fluorescence (λ_{max} 254 nm) and/or by staining with 5% w/v phosphomolybdic acid in EtOH followed by heating. Flash chromatography was performed using E. Merck silica gel (60, particle size 40–60 μ m). $R_{\rm f}$ values are quoted to ± 0.01 . Boiling points were obtained by short path distillation and are uncorrected. Melting points were obtained using a Thomas Hoover capillary melting point apparatus, and are uncorrected. Specific optical rotations were recorded on a Perkin-Elmer 343 polarimeter using the D-line of sodium at the specified temperature. $[a]_D$ values are given in 10^{-1} deg cm² g⁻¹; concentrations (c) are quoted in g 100 mL⁻¹. Infrared spectra were recorded as thin films between NaCl plates on a Perkin-Elmer 1600 series FT-IR spectrometer. Only significant absorption maxima (v_{max}) are reported, and all absorptions are reported in wavenumbers (cm⁻¹). Proton magnetic resonance spectra (¹H-NMR) were recorded at 400, 500 or 600 MHz using Bruker AMX-400, DRX-500 and DRX-600 spectrometers. Chemical shifts ($\delta_{\rm H}$) are reported in parts per million (ppm), and are referenced to the residual protonated solvent peak. ¹H-¹H COSY, nOe or NOESY experiments were used in selected cases to aid assignment. The order of citation in parentheses is (1) number of equivalent nuclei (by integration), (2) multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, qn = quintet, m = multiplet, br = broad), (3) coupling constant (J) quoted in Hertz (Hz) to the nearest 0.1 Hz, and (4) assignment. For clarity, the labelling of the protons corresponds to the numbering illustrated for the natural products (1 and 2) in Fig. 1. Carbon magnetic resonance spectra (13 C-NMR) were recorded at 125 or 150 MHz using Bruker DRX-500 and DRX-600 spectrometers. ¹H-¹³C HSQC and HMBC experiments were used in selected cases to aid assignment. Chemical shifts ($\delta_{\rm C}$) are quoted in parts per million (ppm) and are referenced to the appropriate solvent peak. Fluorine magnetic resonance spectra (19F-NMR) were recorded at 376 MHz using a Bruker AMX-400 spectrometer. Chemical shifts (δ_F) are quoted in parts per million (ppm). High resolution mass spectra (HRMS) were recorded on a VG ZAB-ZSE mass spectrometer using MALDI (matrix-assisted laser-desorption ionisation) or an Agilent ESI-TOF (electrospray time-of-flight) mass spectrometer at 4000 V emitter voltage.

Solutions of lithium diisopropylamide (LDA) were prepared by the dropwise addition of n-butyllithium (1.0 equiv.) a solution of diisopropylamine (1.0 equiv.) in the stated amount of THF at -78 °C and stirring for one h before the subsequent addition of the appropriate substrate. 4-Methoxybenzyl trichloroacetimidate (47) was prepared following the procedure of Organ and Wang.⁵³

Hydrazone 10

To a stirred suspension of powdered, activated 4 Å molecular sieves (ca. 1.5 g) in CH_2Cl_2 (12 mL) were added ketone 14 ¹⁹ (1.1 g, 8.45 mmol) and (R)-(+)-1-amino-2-(methoxymethyl)pyrrolidine 15 (1.0 g, 7.68 mmol) at room temperature. After 2 h the mixture was diluted with Et₂O (20 mL) and filtered through a pad of Celite[®], washing thoroughly with Et₂O. The filtrate was concentrated in vacuo, and the residue was purified by flash chromatography on silica gel (gradient: 25–40% Et₂O in hexanes with 2% Et₃N) to give 10 (1.82 g, 98%) as a colourless oil, the spectroscopic data of which were in agreement with those reported in the literature.¹⁹ $R_f = 0.20$ (3 : 2 hexanes–Et₂O + 2% Et₃N); δ_H (400 MHz, CDCl₃) 4.54 (1 H, d, J 16.2 Hz, CH₂C=N), 4.31–4.35 (2 H, m, $CH_2C=N$ and $CH_2C=N$), 4.24 (1 H, d, J 14.6 Hz, CH₂C=N), 3.39-3.43 (1 H, m, NCHCH₂OCH₃), 3.35 (3 H, s, CH_2OCH_3), 3.23–3.28 (2 H, m, CH_2OCH_3 and CH_2OCH_3), 3.04–3.09 (1 H, m, NCH_2CH_2), 2.46–2.52 (1 H, m, NCH₂CH₂), 1.96–2.03 (1 H, m, NCHCH₂), 1.79–1.88 (2 H, m, $NCHCH_2$ and NCH_2CH_2), 1.60–1.69 (1 H, m, NCH_2CH_2), 1.43 [3 H, s, $O_2C(CH_3)_2$], 1.40 [3 H, s, $O_2C(CH_3)_2$].

Epoxide 20²⁰

To a stirred solution of TrCl (209.5 g, 754 mmol) in CH_2Cl_2 (900 mL) was added Et_3N (191 mL, 1.37 mol) at 0 °C, followed by a solution of (*S*)-(–)-glycidol (50.325 g, 679 mmol) in CH_2Cl_2 (100 mL) and a catalytic amount of 4-DMAP. The solution was allowed to warm to room temperature and stirred for 24 h, before the addition of sat. aq. $NH_4Cl(1 L)$. The layers were separated, and the aqueous layer was extracted with CH_2Cl_2 (2 × 500 mL). The organic layers were then dried (MgSO₄), filtered and concentrated

in vacuo. The residue was then partitioned between Et₂O (1 L) and water (500 mL). The layers were separated, and the organic layer was washed with brine (1 \times 500 mL), dried (MgSO₄), and filtered through a pad of silica gel (10 cm \times 10 cm), washing thoroughly with Et₂O. The filtrate was then concentrated in vacuo to give a yellow solid that was triturated from cold EtOH, and the product was collected by suction filtration and washed with cold EtOH to give 20 (186.7 g, 88%) as a white powder, the spectroscopic data of which were in agreement with those reported in the literature. 20 $\delta_{\rm H}$ (500 MHz, CDCl₃) 7.47–7.50 (6 H, m, Ar*H*), 7.29–7.31 (6 H, m, Ar*H*), 7.22–7.25 (3 H, m, Ar*H*), 3.32–3.36 (1 H, m, 24-H), 3.12–3.17 (2 H, m, 24-H and 25-H), 2.75–2.77 (1 H, m, 26-H), 2.61–2.62 (1 H, m, 26-H); $\delta_{\rm C}$ (125 MHz, CDCl₃) 143.8, 128.6, 127.8, 127.0, 86.7, 64.7, 51.0, 44.6.

Alcohol 21

Freshly prepared *n*-propylmagnesium bromide (500 mL, 2.36 M in THF, 1178 mmol) was added dropwise to a stirred suspension of CuI (22.47 g, 118 mmol) in THF (1 L) at -45 °C. After 30 min, a solution of epoxide 20 (186.4 g, 589 mmol) in THF (700 mL) was added dropwise over 1 h, and the resulting mixture was stirred for 20 min at -45 °C. The mixture was then carefully poured into a vigorously stirred solution of ice, water, and sat. aq. NH₄Cl (2 L). Et₂O (1 L) was added, and the mixture was stirred vigorously at room temperature for 10 min. Brine (500 mL) was added, the layers were separated, and the aqueous layer was extracted with Et₂O (2 \times 1 L). The combined organic layers were dried (MgSO₄). filtered through Celite® and concentrated in vacuo. The residue was purified by flash chromatography on silica gel (gradient: 10-15% Et_2O in hexanes) to give **21** (206.7 g, 97%) as a colourless oil. $R_{\rm f} = 0.23$ (silica gel, 21 : 4 hexanes–EtOAc); $[a]_{\rm D}^{25} - 1.8^{\circ}$ (c 1.88 in CHCl₃); $v_{\text{max}}/\text{cm}^{-1}$ (film) 3443, 3057, 2937, 1597, 1447, 1318, 1090, 762; $\delta_{\rm H}$ (500 MHz, CDCl₃) 7.45–7.47 (6 H, m, ArH), 7.29– 7.33 (6 H, m, ArH), 7.23–7.26 (3 H, m, ArH), 3.75–3.81 (1 H, m, 25-H), 3.20 (1 H, dd, J 9.5, 3.3 Hz, 24-H), 3.06 (1 H, dd, J 9.5, 7.6 Hz, 24-H), 2.37 (1 H, br s, OH), 1.20–1.47 (6 H, m, 26-H, 26-H, 27-H, 27-H, 28-H and 28-H), 0.88 (3 H, t, J 7.1 Hz, 28- CH_3); δ_C (125 MHz, CDCl₃) 143.9, 128.6, 127.8, 127.0, 86.6, 70.9, 67.8, 33.0, 27.6, 22.6, 14.0; HRMS (ES⁺) m/z calc. for $C_{25}H_{28}O_2Na$ ([MNa]⁺): 383.1981, found: 383.1981.

p-Methoxybenzyl ether 22

A solution of alcohol **21** (205.5 g, 570 mmol) in THF (700 mL) was carefully added dropwise to a stirred suspension of NaH (34.2 g, 60% mineral oil dispersion, 855 mmol) in THF (1 L) at 0 °C, and the mixture stirred for 30 min at that temperature before warming to room temperature for 1 h. PMBCl (116 mL, 855 mmol) and tetra-*n*-butylammonium iodide (4.21 g, 11.4 mmol) were then added, and the solution was heated to 45 °C for 12 h, then to 55 °C for an additional 24 h. The reaction was then cooled to room temperature and cautiously quenched by the addition of sat. aq. NH₄Cl (1.5 L) and extracted with Et₂O (2 × 500 mL). The combined organic layers were then dried (MgSO₄), filtered and concentrated *in vacuo*. The residue was purified by flash chromatography on silica gel (gradient: 2–5% EtOAc in hexanes) to give **22** (224.2 g, 82%) as a pale orange oil. $R_{\rm f} = 0.39$ (silica gel, 21 : 4 hexanes–EtOAc); $[a]_{\rm D}^{25}$ +19.0° (*c* 1.44 in CHCl₃); $v_{\rm max}/{\rm cm}^{-1}$

(film) 3058, 2869, 1613, 1448, 1248, 1091, 899; $\delta_{\rm H}$ (500 MHz, CDCl₃) 7.52–7.54 (6 H, m, Ar*H*), 7.31–7.34 (8 H, m, Ar*H*), 7.24–7.26 (3 H, m, Ar*H*), 6.90 (2 H, d, *J* 8.6 Hz, Ar*H*), 4.69 (1 H, d, *J* 11.2 Hz, OC*H*₂Ar), 4.51 (1 H, d, *J* 11.2 Hz, OC*H*₂Ar), 3.81 (3 H, s, ArOC*H*₃), 3.55–3.59 (1 H, m, 25-H), 3.26 (1 H, dd, *J* 9.8, 5.8 Hz, 24-H), 3.17 (1 H, dd, *J* 9.8, 4.7 Hz, 24-H), 1.55–1.59 (2 H, m, 26-H and 26-H), 1.23–1.37 (4 H, m, 27-H, 27-H, 28-H and 28-H), 0.89 (3 H, t, *J* 7.1 Hz, 28-C*H*₃); $\delta_{\rm C}$ (125 MHz, CDCl₃) 159.0, 144.2, 131.1, 129.4, 128.7, 127.7, 126.8, 113.7, 86.6, 78.2, 71.7, 66.2, 55.2, 31.8, 27.6, 22.7, 14.0; HRMS (ES⁺) *m/z* calc. for $C_{33}H_{36}O_3Na$ ([MNa]⁺): 503.2556, found: 503.2559.

Alcohol 23

To a suspension of protected diol 22 (145.1 g, 301 mmol) in MeOH (1.6 L) was added TsOH·H₂O (5.73 g, 30.1 mmol) in one portion at room temperature. After stirring for 20 min, Et₃N (14.3 mL) was added and the reaction mixture was concentrated in vacuo. The residue was purified by flash chromatography on silica gel (30% EtOAc in hexanes) to give 23 (64.88 g, 90%) as a pale yellow oil. $R_{\rm f} = 0.24$ (silica gel, 3 : 2 hexanes–EtOAc); $[a]_{\rm D}^{25} - 18.8^{\circ}$ (c 0.86 in CHCl₃); $v_{\text{max}}/\text{cm}^{-1}$ (film) 3438, 2930, 1612, 1465, 1302, 1174, 822; $\delta_{\rm H}$ (500 MHz, CDCl₃) 7.24 (2 H, d, J 8.7 Hz, ArH), 6.85 (2 H, d, J 8.7 Hz, ArH), 4.51 (1 H, d, J 11.2 Hz, OCH₂Ar), 4.44 (1 H, d, J 11.2 Hz, OCH₂Ar), 3.76 (3 H, s, ArOCH₃), 3.62 (1 H, dd, J 11.0, 2.9 Hz, 24-H), 3.42–3.49 (2 H, m, 24-H and 25-H), 2.22 (1 H, br s, OH), 1.54–1.60 (2 H, m, 26-H and 26-H), 1.26–1.32 (4 H, m, 27-H, 27-H, 28-H and 28-H), 0.87 (3 H, t, J 7.1 Hz, 28-C H_3); δ_C (125 MHz, CDCl₃) 159.1, 130.5, 129.3, 113.7, 79.4, 71.1, 64.1, 55.1, 30.5, 27.5, 22.8, 13.9; HRMS (MALDI-FTMS) m/z calc. for $C_{14}H_{22}O_3Na$ ([MNa]⁺): 261.1461, found: 261.1463.

Aldehyde 24

A solution of DMSO (56.2 mL, 792 mmol) in CH₂Cl₂ (70 mL) was added dropwise over 20 min to a stirred solution of (COCl)₂ $(34.5 \text{ mL}, 396 \text{ mmol}) \text{ in } CH_2Cl_2 (1 \text{ L}) \text{ at } -78 \,^{\circ}\text{C}$. After 20 min, a solution of alcohol 23 (63.1 g, 264 mmol) in CH₂Cl₂ (400 mL) was added over 20 min, and the mixture was stirred for a further 30 min at -78 °C before the addition of Et₃N (221 mL, 1584 mmol) over 5 min. The mixture was allowed to warm to room temperature over 1 h, and was then poured into water (1 L). The layers were separated, and the aqueous layer was extracted with CH2Cl2 $(2 \times 600 \text{ mL})$. The combined organic layers were dried (MgSO₄), filtered and concentrated in vacuo. The residue was purified by flash chromatography on silica gel (gradient: 10-15% EtOAc in hexanes) to give 24 (62.6 g, 99%) as a colourless oil. $R_f = 0.49$ (silica gel, 3: 2 hexanes–EtOAc); $[a]_D^{25}$ +59.0° (c 1.25 in CHCl₃); v_{max} /cm⁻¹ (film) 2959, 1732, 1514, 1378, 1249, 1094, 821; $\delta_{\rm H}$ (500 MHz, CDCl₃) 9.58 (1 H, d, J 2.2 Hz, 24-H), 7.25 (2 H, d, J 8.7 Hz, ArH), 6.86 (2 H, d, J 8.7 Hz, ArH), 4.56 (1 H, d, J 11.4 Hz, OCH₂Ar), 4.45 (1 H, d, J 11.4 Hz, OCH₂Ar), 3.77 (3 H, s, ArOCH₃), 3.69 (1 H, td, J 6.5, 2.2 Hz, 25-H), 1.60–1.65 (2 H, m, 26-H and 26-H), 1.24–1.43 (4 H, m, 27-H, 27-H, 28-H and 28-H), 0.86 (3 H, t, J 7.2 Hz, 28-C H_3); δ_C (125 MHz, CDCl₃) 204.0, 159.4, 129.6, 129.4, 113.8, 83.1, 72.1, 55.2, 29.7, 26.8, 22.4, 13.8; HRMS (MALDI-FTMS) m/z calc. for $C_{14}H_{20}O_3Na$ ([MNa]⁺): 259.1305, found: 259.1301.

Alcohol 26

A solution of aldehyde 24 (61.0 g, 258 mmol) in Et₂O (1.5 L) was cooled to 0 °C in a 5 L three-neck round-bottomed flask equipped with an addition funnel and a mechanical stirrer, then MgBr₂·OEt₂ (106.7 g, 413 mmol) was added in one portion. After 10 min, allyltributyltin (136 mL, 439 mmol) was added dropwise over 10 min. After stirring for 3 h at 0 °C, the reaction was quenched by the addition of sat. aq. NaHCO₃ (1 L) and warmed to room temperature. The mixture was partitioned between Et₂O (1 L) and 5% aq. KF (1 L). The layers were separated and the organic layer was washed with brine (1 \times 500 mL), and the combined aqueous layers were extracted with Et₂O (2 \times 1 L). The combined organic layers were dried (MgSO₄), filtered and concentrated in vacuo. The residue was purified by flash chromatography on silica gel (gradient: 5–35% EtOAc in hexanes) to give **26** (70.95 g, 99%) as a colourless oil. $R_f = 0.20$ (silica gel, 4 : 1 hexanes–EtOAc); $[a]_D^{25}$ -17.2° (c 1.01 in CHCl₃); $v_{\text{max}}/\text{cm}^{-1}$ (film) 3451, 2932, 1613, 1465, 1249, 1088, 913; $\delta_{\rm H}$ (500 MHz, CDCl₃) 7.24 (2 H, d, J 8.5 Hz, ArH), 6.86 (2 H, d, J 8.5 Hz, ArH), 5.83 (1 H, ddt, J 17.3, 10.3 and 7.0 Hz, 22-H), 5.05-5.09 (2 H, m, 21-H and 21-H), 4.56 (1 H, d, J 11.0 Hz, OC H_2 Ar), 4.41 (1 H, d, J 11.0 Hz, OC H_2 Ar), 3.77 (3 H, s, ArOCH₃), 3.52 (1 H, ddd, J 7.8, 5.5 and 4.8 Hz, 24-H), 3.28 (1 H, q, J 5.5 Hz, 25-H), 2.04–2.50 (3 H, m, 23-H, 23-H and OH), 1.58–1.65 (1 H, m, 26-H), 1.50–1.57 (1 H, m, 26-H), 1.26– 1.36 (4 H, m, 27-H, 27-H, 28-H and 28-H), 0.89 (3 H, t, J 7.0 Hz, 28-C H_3); δ_C (125 MHz, CDCl₃) 159.2, 135.0, 130.5, 129.4, 117.1, 113.8, 81.0, 72.0, 72.0, 55.2, 38.1, 29.9, 27.4, 22.9, 14.0; HRMS (MALDI-FTMS) m/z calc. for $C_{17}H_{26}O_3Na$ ([MNa]⁺): 301.1774, found: 301.1773.

t-Butyldimethylsilyl ether 27

TBSCl (64.43 g, 427.5 mmol) and a catalytic amount of 4-DMAP were added to a stirred solution of alcohol **26** (70.34 g, 252 mmol) and imidazole (42.8 g, 628.6 mmol) in CH₂Cl₂ (600 mL) at room temperature. After 16 h the reaction mixture was partitioned between brine (1 L) and CH₂Cl₂ (500 mL). The layers were separated, and the aqueous layer was extracted with CH₂Cl₂ $(2 \times 500 \text{ mL})$. The combined organic layers were dried (MgSO₄), filtered and concentrated in vacuo. The residue was purified by flash chromatography on silica gel (gradient: 2-4% EtOAc in hexanes) to give 27 (103.2 g, 95%) as a colourless oil. $R_f = 0.59$ (silica gel, 24 : 1 hexanes–EtOAc); $[a]_D^{25}$ +26.3° (c 1.52 in CHCl₃); $v_{\rm max}/{\rm cm}^{-1}$ (film) 2955, 2857, 1613, 1464, 1249, 1084, 1005, 836; $\delta_{\rm H}$ (600 MHz, CDCl₃) 7.27 (2 H, d, J 8.6 Hz, ArH), 6.88 (2 H, d, J 8.6 Hz, ArH), 5.83 (1 H, ddt, J 17.2, 10.1 and 7.2 Hz, 22-H), 5.04 (1 H, d, J 17.2 Hz, 21-H), 5.02 (1 H, d, J 10.1 Hz, 21-H), 4.54 (1 H, d, J 11.4 Hz, OCH₂Ar), 4.47 (1 H, d, J 11.4 Hz, OCH₂Ar), 3.80 (3 H, s, ArOCH₃), 3.78–3.80 (1 H, m, 24-H), 3.30 (1 H, ddd, J 9.2, 4.3 and 2.9 Hz, 25-H), 2.37–2.41 (1 H, m, 23-H), 2.08–2.13 (1 H, m, 23-H), 1.60–1.66 (1 H, m, 26-H), 1.43–1.49 (1 H, m, 26-H), 1.36-1.42 (1 H, m, 27-H), 1.22-1.32 (3 H, m, 27-H, 28-H and 28-H), 0.89 (3 H, t, J 7.2 Hz, 28-C H_3), 0.88 [9 H, m, $SiC(CH_3)_3$], 0.03 (3 H, s, $SiCH_3$), 0.01 (3 H, s, $SiCH_3$); $\delta_{\rm C}$ (150 MHz, CDCl₃) 159.1, 136.5, 131.1, 129.3, 116.4, 113.7, 81.6, 72.4, 72.0, 65.3, 36.3, 28.6, 28.4, 25.8, 22.8, 18.0, 14.1, -4.4;HRMS (ES⁺) m/z calc. for $C_{23}H_{40}O_3SiNa$ ([MNa]⁺): 415.2639, found: 415.2630.

Alcohol 28

BH₃·SMe₂ (104 mL, 10.0 M, 1040 mmol) was added dropwise to a stirred solution of alkene 27 (102 g, 259.8 mmol) in THF (700 mL) at 0 °C. The solution was warmed to room temperature for 7 h, then was re-cooled to 0 °C before being quenched by the careful addition 3 M aq. NaOH (1.5 L) and Et₂O (500 mL), then the dropwise addition of 35% aq. H₂O₂ (700 mL) with vigorous stirring over 3 h. The solution was allowed to warm to room temperature overnight, then partitioned between brine (500 mL) and Et₂O (500 mL). The layers were separated, and the aqueous layer was extracted with Et₂O (3×500 mL). The combined organic layers were dried (MgSO₄), filtered and concentrated in vacuo. The residue was purified by flash chromatography on silica gel (gradient: 15–25% EtOAc in hexanes) to give **28** (90.99 g, 85%) as a colourless oil. $R_f = 0.23$ (silica gel, 17 : 8 hexanes–EtOAc); $[a]_D^{25}$ $+26.9^{\circ}$ (c 1.57 in CHCl₃); $v_{\text{max}}/\text{cm}^{-1}$ (film) 3380, 2953, 1613, 1463, $1302, 1173, 893; \delta_{H} (500 \text{ MHz}, \text{CDCl}_{3}) 7.22 (2 \text{ H}, \text{d}, J 8.6 \text{ Hz}, \text{Ar} H),$ 6.84 (2 H, d, J 8.6 Hz, ArH), 4.49 (1 H, d, J 11.4 Hz, OCH₂Ar), 4.43 (1 H, d, J 11.4 Hz, OCH₂Ar), 3.77 (3 H, s, ArOCH₃), 3.72-3.75 (1 H, m, 24-H), 3.57-3.60 (2 H, m, 21-H and 21-H), 3.28 (1 H, ddd, J 9.1, 4.6 and 2.7 Hz, 25-H), 1.88 (1 H, br s, OH), 1.53– 1.71 (3 H, m, 22-H, 26-H and 26-H), 1.30-1.52 (4 H, m, 22-H, 23-H, 23-H and 27-H), 1.14–1.29 (3 H, m, 27-H, 28-H and 28-H), 0.83-0.86 [12 H, m, 28-CH₃ and SiC(CH₃)₃], 0.01 (3 H, s, SiCH₃), -0.02 (3 H, s, SiC H_3); δ_C (125 MHz, CDCl₃) 159.1, 131.0, 129.3, 113.7, 81.7, 72.4, 72.1, 63.1, 55.2, 29.5, 28.6, 28.4, 27.6, 25.8, 22.8, 18.0, 14.1, -4.4, -4.6; HRMS (ES+) m/z calc. for $C_{23}H_{42}O_4SiNa$ ([MNa]⁺): 433.2744, found: 433.2730.

Aldehyde 29

A solution of DMSO (43.5 mL, 613.6 mmol) in CH₂Cl₂ (60 mL) was added dropwise over 20 min to a stirred solution of (COCl)₂ $(26.8 \text{ mL}, 306.8 \text{ mmol}) \text{ in } CH_2Cl_2 (700 \text{ mL}) \text{ at } -78 ^{\circ}\text{C}. \text{ After}$ 20 min, a solution of alcohol 28 (90.0 g, 219 mmol) in CH₂Cl₂ (300 mL) was added over 20 min, and the mixture stirred for 30 min at -78 °C before the addition of Et₃N (171 mL, 1227 mmol). The mixture was allowed to warm to room temperature over 1 h, and was then poured into water (1 L). The layers were separated, and the aqueous layer was extracted with CH2Cl2 $(2 \times 500 \text{ mL})$. The combined organic layers were dried (MgSO₄), filtered and concentrated in vacuo. The residue was purified by flash chromatography on silica gel (gradient: 6-15% EtOAc in hexanes) to give **29** (83.53 g, 93%) as a colourless oil. $R_{\rm f} = 0.24$ (silica gel, 8 : 1 hexanes–EtOAc); $[a]_D^{25}$ +27.0° (c 0.93 in CHCl₃); $v_{\rm max}/{\rm cm}^{-1}$ (film) 2955, 2715, 1727, 1513, 1361, 1173, 1005, 837; $\delta_{\rm H}$ (600 MHz, CDCl₃) 9.75 (1 H, dd, J 1.7, 1.5 Hz, 21-H), 7.26 (2 H, d, J 8.6 Hz, ArH), 6.87 (2 H, d, J 8.6 Hz, ArH), 4.51 (1 H, d, J 11.3 Hz, OCH₂Ar), 4.44 (1 H, d, J 11.3 Hz, OCH₂Ar), 3.79 (3 H, s, ArOCH₃), 3.77–3.79 (1 H, m, 24-H), 3.29 (1 H, ddd, J 9.5, 4.4 and 2.6 Hz, 25-H), 2.51 (1 H, dddd, J 17.4, 8.6, 5.9 and 1.5 Hz, 22-H), 2.41 (1 H, dddd, J 17.4, 8.4, 6.7 and 1.7 Hz, 22-H), 1.96 (1 H, dddd, J 14.1, 8.6, 6.7 and 3.4 Hz, 23-H), 1.63–1.67 (1 H, m, 23-H), 1.58–1.62 (1 H, m, 26-H), 1.42–1.50 (1 H, m, 27-H), 1.34– 1.40 (1 H, m, 26-H), 1.20–1.32 (3 H, m, 27-H, 28-H and 28-H), 0.88 (3 H, t, J 7.1 Hz, 28-C H_3), 0.86 [12 H, s, SiC(C H_3)₃], 0.01 (3 H, s, SiC H_3), 0.00 (3 H, s, SiC H_3); δ_C (150 MHz, CDCl₃) 202.7, 159.2, 130.9, 129.4, 113.7, 81.5, 72.0, 71.1, 55.3, 40.7, 28.7, 28.1, 25.8, 23.6, 22.7, 17.9, 14.1, -4.3, -4.7; HRMS (ES⁺) m/z calc. for $C_{23}H_{40}O_4SiNa$ ([MNa]⁺): 431.2588, found: 431.2570.

Alcohol 30

Allylmagnesium bromide (316 mL, 1.0 M in THF, 316 mmol) was added dropwise over 20 min to a stirred solution of (+)- Ipc_2BOMe (100 g, 316 mmol) in Et_2O (1.5 L) at -78 °C. After 15 min, the solution was warmed to room temperature for 1 h, then cooled to -78 °C, where a solution of aldehyde **29** (63.0 g, 154 mmol) in Et₂O (500 mL) was added over 20 min. After 3 h at -78 °C, the solution was warmed to 0 °C before the cautious addition of 3 M aq. NaOH (400 mL) over 90 min, followed by the dropwise addition of 35% aq. H₂O₂ (100 mL) over 1 h. After the addition of Et₂O (110 mL) and H₂O (700 mL), the mixture was allowed to stir overnight warming to room temperature. The layers were then separated, the aqueous layer was extracted with Et₂O $(2 \times 1 \text{ L})$, and the combined organic layers were dried (MgSO₄), filtered and concentrated in vacuo. Most of the isopinocampheol by-product was removed by vacuum distillation (bath temperature 100–105 °C, 2 mmHg), and the residue was then purified by flash chromatography on silica gel (gradient: 10–25% Et₂O in hexanes) to give **30** (62.3 g, 90%) as a colourless oil. $R_f = 0.16$ (silica gel, 4: 1 hexanes–EtOAc); $[a]_D^{25}$ +26.0° (c 0.55 in CHCl₃); v_{max} /cm⁻¹ (film) 3414, 2930, 1613, 1361, 1249, 1086, 836; $\delta_{\rm H}$ (500 MHz, CDCl₃) 7.23 (2 H, d, J 8.5 Hz, ArH), 6.84 (2 H, d, J 8.5 Hz, ArH), 5.79 (1 H, dddd, J 17.2, 10.5, 7.5 and 7.0 Hz, 19-H), 5.07–5.11 (2 H, m, 18-H and 18-H), 4.49 (1 H, d, J 11.4 Hz, OCH₂Ar), 4.42 (1 H, d, J 11.4 Hz, OCH₂Ar), 3.77 (3 H, s, ArOCH₃), 3.71–3.74 (1 H, m, 24-H), 3.57–3.62 (1 H, m, 21-H), 3.28 (1 H, ddd, J 9.2, 4.6 and 2.7 Hz, 25-H), 2.23–2.28 (1 H, m, 20-H), 2.11–2.17 (1 H, m, 20-H), 1.90 (1 H, br s, OH), 1.55–1.57 (3 H, m, 22-H, 22-H and 23-H), 1.39-1.46 (1 H, m, 26-H), 1.33-1.38 (2 H, m, 26-H and 27-H), 1.21-1.28 (4 H, m, 23-H, 27-H, 28-H and 28-H), 0.85-0.89 [12 H, m, 28-C H_3 and SiC(C H_3)₃], 0.01 (3 H, s, SiC H_3), -0.02 (3 H, s, SiC H_3); δ_C (125 MHz, CDCl₃) 159.1, 134.9, 131.0, 129.3, 117.8, 113.7, 81.6, 72.6, 72.0, 71.1, 55.2, 41.8, 33.5, 28.5, 28.4, 27.5, 25.8, 22.8, 18.0, 14.1, -4.3, -4.6; HRMS (ES+) m/z calc. for $C_{26}H_{46}O_4SiNa$ ([MNa]⁺): 473.3057, found: 473.3060.

t-Butyldimethylsilyl ether 31

TBSC1 (32.63 g, 216.5 mmol) and a catalytic amount of 4-DMAP were added to a stirred solution of alcohol 30 (61.1 g, 135 mmol) and imidazole (23.04 g, 338 mmol) in CH₂Cl₂ (600 mL) at room temperature. After 3 h, additional portions of TBSCl (20.0 g, 133 mmol) and imidazole (10.0 g, 147 mmol) were added. After an additional 4 h, the reaction mixture was partitioned between brine (1 L) and CH₂Cl₂ (500 mL). The layers were separated, and the aqueous layer was extracted with CH₂Cl₂ $(2 \times 400 \text{ mL})$. The combined organic layers were dried (MgSO₄), filtered and concentrated in vacuo. The residue was purified by flash chromatography on silica gel (gradient: 1-6% EtOAc in hexanes) to give 31 (68.0 g, 89%) as a colourless oil. $R_f = 0.67$ (silica gel, 4: 1 hexanes–EtOAc); $[a]_D^{25}$ +20.0° (c 0.77 in CHCl₃); v_{max} /cm⁻¹ (film) 2923, 1613, 1463, 1361, 1172, 1041, 911; $\delta_{\rm H}$ (500 MHz, CDCl₃) 7.25 (2 H, d, J 8.6 Hz, ArH), 6.86 (2 H, d, J 8.6 Hz, ArH), 5.80 (1 H, ddt, J 17.4, 10.3 and 7.2 Hz, 19-H), 5.01–5.05 (2 H, m, 18-H and 18-H), 4.52 (1 H, d, J 11.4 Hz, OCH₂Ar),

4.45 (1 H, d, J 11.4 Hz, OC H_2 Ar), 3.79 (3 H, s, ArOC H_3), 3.66–3.72 (2 H, m, 21-H and 24-H), 3.27 (1 H, ddd, J 9.1, 4.5 and 2.7 Hz, 25-H), 2.20–2.23 (2 H, m, 20-H and 20-H), 1.59–1.72 (3 H, m, 22-H, 23-H and 26-H), 1.43–1.49 (1 H, m, 27-H), 1.21–1.41 (6 H, m, 22-H, 23-H, 26-H, 27-H, 28-H and 28-H), 0.90 [9 H, s, SiC(CH_3), 3], 0.87–0.89 [12 H, m, 28- CH_3 and SiC(CH_3), 0.01 (3 H, s, SiC CH_3), δ_C (125 MHz, CDCl₃) 159.0, 135.3, 131.2, 129.2, 116.6, 113.6, 81.9, 72.9, 72.3, 71.9, 55.2, 42.0, 33.7, 28.6, 28.5, 27.1, 25.9, 25.9, 22.8, 18.1, 18.0, 14.1, -4.3, -4.4, -4.5, -4.6; HRMS (ES⁺) M/Z calc. for $C_{32}H_{60}O_4$ Si₂Na ([MNa]⁺): 587.3922, found: 587.3917.

Aldehyde 32

A solution of alkene 31 (57.0 g, 100.4 mmol) in CH₂Cl₂ (1 L) was cooled to -78 °C and a stream of ozone (ca. 10% in oxygen) was bubbled through the mixture until TLC analysis confirmed the complete consumption of starting material, then oxygen was bubbled through the solution for an additional 20 min to remove excess ozone. PPh₃ (6.56 g, 25.0 mmol) was added to the solution, which was then stirred and warmed to room temperature over 1 h. The mixture was then concentrated under reduced pressure, and triturated with 4: 1 hexanes-Et₂O. The precipitated Ph₃PO was then removed by filtration, and the filtrate was concentrated in vacuo. The residue was purified by flash chromatography on silica gel (gradient: 8–10% EtOAc in hexanes) to give 32 (52.1 g, 92%) as a colourless oil. $R_{\rm f} = 0.26$ (silica gel, 8 : 1 hexanes-EtOAc); $[a]_D^{25} + 27.3^{\circ}$ (c 0.88 in CHCl₃); $v_{\text{max}}/\text{cm}^{-1}$ (film) 2956, 2712, 1727, 1513, 1361, 1172, 938; $\delta_{\rm H}$ (500 MHz, CDCl₃) 9.76 (1 H, dd, J 2.7, 2.1 Hz, 19-H), 7.21 (2 H, d, J 8.6 Hz, ArH), 6.83 (2 H, d, J 8.6 Hz, ArH), 4.47 (1 H, d, J 11.4 Hz, OCH₂Ar), 4.44 (1 H, d, J 11.4 Hz, OCH₂Ar), 4.14–4.18 (1 H, m, 21-H), 3.75 (3 H, s, ArOCH₃), 3.66-3.69 (1 H, m, 24-H), 3.25 (1 H, ddd, J 9.1, 4.3 and 2.7 Hz, 25-H), 2.49 (1 H, ddd, J 15.6, 6.6 and 2.7 Hz, 20-H), 2.45 (1 H, ddd, J 15.6, 5.0 and 2.1 Hz, 20-H), 1.64–1.68 (2 H, m, 23-H and 26-H), 1.55–1.61 (1 H, m, 22-H), 1.42–1.47 (2 H, m, 22-H and 27-H), 1.20–1.37 (5 H, m, 23-H, 26-H, 27-H, 28-H and 28-H), 0.86 (3 H, t, J 7.1 Hz, 28-CH₃), 0.85 [9 H, s, $SiC(CH_3)_3$], 0.85 [9 H, s, $SiC(CH_3)_3$], 0.05 (3 H, s, $SiCH_3$), $0.03 (3 \text{ H, s, SiC}H_3), -0.01 (3 \text{ H, s, SiC}H_3), -0.02 (3 \text{ H, s, SiC}H_3);$ $\delta_{\rm C}$ (125 MHz, CDCl₃) 201.9, 159.1, 131.1, 129.2, 113.6, 81.8, 72.5, 72.0, 68.4, 55.1, 50.7, 34.5, 28.6, 28.4, 26.7, 25.8, 25.7, 22.7, 17.9, 17.9, 14.0, -4.4, -4.4, -4.6, -4.6; HRMS (ES⁺) m/z calc. for C₃₁H₅₈O₅Si₂Na ([MNa]⁺): 589.3715, found: 589.3704.

Alcohol 33

Allylmagnesium bromide (215 mL, 1.0 M in THF, 215 mmol) was added dropwise over 20 min to a stirred solution of (+)-Ipc₂BOMe (68.1 g, 215 mmol) in Et₂O (1 L) at -78 °C. After 15 min, the solution was warmed to room temperature for 1 h, then cooled to -78 °C, where a solution of aldehyde **32** (58.6 g, 103 mmol) in Et₂O (350 mL) was added dropwise over 20 min. After 3 h at -78 °C, the solution was warmed to 0 °C before the cautious addition of 3 M aq. NaOH (300 mL) over 90 min, followed by the addition of 35% aq. H₂O₂ (75 mL) over 1 h. After the addition of Et₂O (100 mL) and H₂O (500 mL), the stirred mixture was allowed to warm to room temperature overnight. The layers were then separated, and the aqueous layer was extracted with Et₂O

 $(2 \times 750 \text{ mL})$. The combined organic layers were dried (MgSO₄), filtered and concentrated in vacuo. Most of the isopinocampheol by-product was removed by vacuum distillation (bath temperature 100-105 °C, 2 mmHg), and the residue was then purified by flash chromatography on silica gel (gradient: 6–10% Et₂O in hexanes) to give 33 (59.79 g, 95%) as a colourless oil. $R_f = 0.39$ (silica gel, 3 : 1 hexanes–EtOAc); $[a]_D^{25}$ +32.4° (c 1.48 in CHCl₃); $v_{\text{max}}/\text{cm}^{-1}$ (film) 3474, 2955, 1613, 1463, 1302, 1172, 916, 774; $\delta_{\rm H}$ (500 MHz, CDCl₃) 7.25 (2 H, d, J 8.6 Hz, ArH), 6.87 (2 H, d, J 8.6 Hz, ArH), 5.83 (1 H, ddt, J 17.3, 10.3 and 7.1 Hz, 17-H), 5.08–5.12 (2 H, m, 16-H and 16-H), 4.50 (1 H, d, J 11.4 Hz, OCH₂Ar), 4.47 (1 H, d, J 11.4 Hz, OCH₂Ar), 3.90–3.95 (1 H, m, 21-H), 3.79 (3 H, s, ArOCH₃), 3.77–3.81 (1 H, m, 19-H), 3.60–3.67 (1 H, m, 24-H), $3.28~(1~\mathrm{H},~\mathrm{ddd},~J~9.2,~4.4~\mathrm{and}~2.7~\mathrm{Hz},~1\mathrm{H},~25\mathrm{-H}),~3.07~(1~\mathrm{H},~\mathrm{br}~\mathrm{s},$ OH), 2.22 (2 H, app t, J 6.8 Hz, 18-H and 18-H), 1.22–1.69 (12 H, m, 20-H, 20-H, 22-H, 22-H, 23-H, 26-H, 26-H, 27-H, 27-H, 28-H and 28-H), 0.88-0.90 [21 H, m, 28-C H_3 , SiC(C H_3)₃ and $SiC(CH_3)_3$, 0.11 (3 H, s, $SiCH_3$), 0.11 (3 H, s, $SiCH_3$), 0.02 $(3 \text{ H}, \text{ s}, \text{SiC}H_3), -0.01 (3 \text{ H}, \text{ s}, \text{SiC}H_3); \delta_{\text{C}} (125 \text{ MHz}, \text{CDCl}_3) 159.1,$ 134.9, 131.1, 129.2, 117.3, 113.7, 81.9, 73.2, 72.8, 72.0, 70.2, 55.2, 42.2, 42.1, 34.7, 28.6, 28.4, 26.1, 25.8, 25.8, 22.8, 18.0, 17.9, 14.0, -4.0, -4.4, -4.5, -4.7; HRMS (ES⁺) m/z calc. for $C_{34}H_{64}O_5Si_2Na$ ([MNa]⁺): 631.4184, found: 631.4159.

t-Butyldimethylsilyl ether 34

TBSC1 (4.50 g, 29.9 mmol) and a catalytic amount of 4-DMAP were added to a stirred solution of alcohol 33 (9.13 g, 14.9 mmol) and imidazole (4.07 g, 59.8 mmol) in CH₂Cl₂ (70 mL) at room temperature. After 7 h, the reaction mixture was partitioned between brine (200 mL) and CH₂Cl₂ (100 mL). The layers were separated, the aqueous layer was extracted with CH_2Cl_2 (2 × 100 mL), and the combined organic layers were dried (MgSO₄), filtered and concentrated in vacuo. The residue was purified by flash chromatography on silica gel (gradient: 2-6% EtOAc in hexanes) to give 34 (10.22 g, 95%) as a colourless oil. $R_{\rm f}=0.33$ (silica gel, 24 : 1 hexanes–EtOAc); $[a]_D^{25} + 14.9^\circ$ (c 1.52 in CHCl₃); $v_{\rm max}/{\rm cm}^{-1}$ (film) 2955, 1612, 1463, 1252, 1091, 913; $\delta_{\rm H}$ (500 MHz, CDCl₃) 7.27 (2 H, d, J 8.6 Hz, ArH), 6.89 (2 H, d, J 8.6 Hz, ArH), 5.84 (1 H, ddt, J 17.4, 9.7 and 7.1 Hz, 17-H), 5.05–5.07 (2 H, m, 16-H and 16-H), 4.54 (1 H, d, J 11.4 Hz, OCH₂Ar), 4.48 (1 H, d, J 11.4 Hz, OC H_2 Ar), 3.81 (3 H, s, ArOC H_3), 3.77–3.82 (2 H, m, 19-H and 21-H), 3.72–3.75 (1 H, m, 24-H), 3.30 (1 H, ddd, J 8.9, 4.4 and 2.8 Hz, 25-H), 2.28-2.33 (1 H, m, 18-H), 2.16-2.20 (1 H, m, 18-H), 1.58–1.77 (5 H, m, 20-H, 20-H, 22-H, 23-H and 26-H), 1.45–1.52 (1 H, m, 27-H), 1.25–1.44 (6 H, m, 22-H, 23-H, 26-H, 27-H, 28-H and 28-H), 0.90–0.94 [30 H, m, 28-CH₃, SiC(CH₃)₃, $SiC(CH_3)_3$ and $SiC(CH_3)_3$, 0.07–0.09 (12 H, s, $SiCH_3$, $SiCH_3$, $SiCH_3$ and $SiCH_3$), 0.06 (3 H, s, $SiCH_3$), 0.04 (3 H, s, $SiCH_3$); δ_C (125 MHz, CDCl₃) 159.1, 135.0, 131.3, 129.2, 116.9, 113.7, 82.0, 72.9, 71.9, 69.7, 69.3, 55.2, 44.6, 42.0, 34.0, 28.7, 28.5, 26.9, 26.0, 25.9, 25.9, 22.8, 18.1, 18.1, 18.0, 14.1, -4.3, -4.3, -4.3, -4.4, -4.5, -4.5; HRMS (ES⁺) m/z calc. for $C_{40}H_{78}O_5Si_3Na$ ([MNa]⁺): 745.5049, found: 745.5050.

Aldehyde 35

A solution of alkene 34 (11.13 g, 15.4 mmol) in CH_2Cl_2 (100 mL) was cooled to -78 °C and a stream of ozone (*ca.* 10% in oxygen)

was bubbled through the mixture until TLC analysis confirmed the complete consumption of starting material, then oxygen was bubbled through the solution for an additional 20 min to remove excess ozone. PPh₃ (6.56 g, 25.0 mmol) was added to the solution, which was then stirred and warmed to room temperature over 1 h. The mixture was then concentrated under reduced pressure, and triturated with 4: 1 hexanes-Et₂O. The precipitated Ph₃PO was then removed by filtration, and the filtrate was concentrated in vacuo. The residue was purified by flash chromatography on silica gel (gradient: 1–4% EtOAc in hexanes) to give 35 (10.07 g, 90%) as a colourless oil. $R_f = 0.29$ (silica gel, 8 : 1 hexanes–EtOAc); $[a]_{\rm D}^{25}$ +24.8° (c 1.80 in CHCl₃); $\nu_{\rm max}/{\rm cm}^{-1}$ (film) 2956, 2715, 1728, 1613, 1386, 1251, 1006, 938; $\delta_{\rm H}$ (500 MHz, CDCl₃) 9.80 (1 H, dd, J 3.0, 1.9 Hz, 17-H), 7.25 (2 H, d, J 8.6 Hz, ArH), 6.87 (2 H, d, J 8.6 Hz, ArH), 4.51 (1 H, d, J 11.4 Hz, OCH₂Ar), 4.47 (1 H, d, J 11.4 Hz, OCH₂Ar), 4.29–4.34 (1 H, m, 19-H), 3.79 $(3 \text{ H}, \text{ s}, \text{ArOC}H_3), 3.69-3.74 (2 \text{ H}, \text{ m}, 21-\text{H} \text{ and } 24-\text{H}), 3.28 (1 \text{ H}, 10)$ ddd, J 9.2, 4.4 and 2.7 Hz, 25-H), 2.60 (1 H, ddd, J 15.6, 4.4 and 1.9 Hz, 18-H), 2.48 (1 H, ddd, J 15.6, 6.7 and 3.0 Hz, 18-H), 1.78 (1 H, ddd, J 13.8, 7.1 and 5.6 Hz, 20-H), 1.56-1.68 (4 H, m, 20-H, 22-H, 23-H and 26-H), 1.43-1.50 (1 H, m, 27-H), 1.23-1.39 (6 H, m, 22-H, 23-H, 26-H, 27-H, 28-H and 28-H), 0.88-0.92 [30 H, m, $28-CH_3$, $SiC(CH_3)_3$, $SiC(CH_3)_3$ and $SiC(CH_3)_3$], 0.08 (3 H, s, $SiCH_3$), 0.06 (6 H, s, $SiCH_3$) and SiC H_3), 0.05 (3 H, s, SiC H_3), 0.04 (3 H, s, SiC H_3), 0.02 (3 H, s, SiC H_3); δ_C (125 MHz, CDCl₃) 202.0, 159.1, 131.2, 129.2, 113.7, 81.9, 72.7, 72.0, 69.5, 65.7, 55.2, 50.8, 44.9, 34.1, 28.7, 28.4, 26.7, 25.9, 25.9, 25.7, 22.8, 18.0, 18.0, 17.9, 14.1, -4.2, -4.4, -4.4, -4.5, -4.5, -4.8; HRMS (ES⁺) m/z calc. for $C_{39}H_{76}O_6Si_3Na$ ([MNa]⁺): 747.4842, found: 747.4830.

Alcohol 36

NaBH₄ (1.04 g, 27.6 mmol) was added in one portion to a stirred solution of aldehyde 35 (10.0 g, 13.8 mmol) in MeOH (50 mL) at 0 °C. After 10 min, the reaction was quenched by the careful addition of sat. aq. NH₄Cl (50 mL) and was then concentrated under reduced pressure to remove most of the MeOH. The mixture was then diluted with water (100 mL) and extracted with EtOAc $(3 \times 75 \text{ mL})$. The combined organic layers were washed with brine $(1 \times 100 \text{ mL})$, dried (MgSO₄), filtered and concentrated in vacuo. The residue was purified by flash chromatography on silica gel (gradient: 15–25% Et₂O in hexanes) to give **36** (9.86 g, 98%) as a viscous, colourless oil. $R_f = 0.31$ (silica gel, 4 : 1 hexanes–EtOAc); $[a]_{\rm D}^{25}$ +6.0° (c 0.60 in CHCl₃); $v_{\rm max}/{\rm cm}^{-1}$ (film) 3454, 2955, 1612, 1471, 1360, 1251, 1092, 836; $\delta_{\rm H}$ (500 MHz, CDCl₃) 7.25 (2 H, d, J 8.6 Hz, ArH), 6.86 (2 H, d, J 8.6 Hz, ArH), 4.51 (1 H, d, J 11.4 Hz, OCH₂Ar), 4.46 (1 H, d, J 11.4 Hz, OCH₂Ar), 4.04–4.09 (1 H, m, 19-H), 3.79 (3 H, s, ArOCH₃), 3.79–3.84 (1 H, m, 21-H), 3.68–3.72 (3 H, m, 17-H, 17-H and 24-H), 3.28 (1 H, ddd, J 9.2, 4.4 and 2.8 Hz, 25-H), 2.57 (1 H, br s, OH), 1.85-1.92 (1 H, m, 18-H), 1.58 (6 H, m, 18-H, 20-H, 20-H, 22-H, 23-H and 26-H), 1.43–1.49 (1 H, m, 27-H), 1.23–1.41 (6 H, m, 22-H, 23-H, 26-H, 27-H, 28-H and 28-H), 0.87–0.91 [30 H, m, 28-C H_3 , SiC(C H_3)₃, $SiC(CH_3)_3$ and $SiC(CH_3)_3$, 0.10 (3 H, s, $SiCH_3$), 0.09 (3 H, s, $SiCH_3$), 0.05 (3 H, s, $SiCH_3$), 0.04 (3 H, s, $SiCH_3$), 0.03 (3 H, s, $SiCH_3$), 0.01 (3 H, s, $SiCH_3$); δ_C (125 MHz, CDCl₃) 159.1, 131.2, 129.2, 113.7, 81.9, 72.8, 72.0, 69.7, 69.4, 60.1, 55.2, 43.9, 37.6, 34.4, 28.7, 28.4, 26.5, 25.8, 25.8, 25.8, 22.8, 18.0, 18.0, 17.9, 14.1, -4.2, -4.4, -4.4, -4.5, -4.5, -4.8; HRMS (ES⁺) m/z calc. for $C_{39}H_{79}O_6Si_3$ ([MH]⁺): 727.5179, found: 727.5184.

Iodide 37

To a stirred solution of alcohol 36 (9.85 g, 13.5 mmol) in benzene (90 mL) were added imidazole (3.76 g, 55.2 mmol), PPh₃ (7.24 g, 27.6 mmol), and I₂ (7.00 g, 27.6 mmol) sequentially at 0 °C. After warming to room temperature for 30 min, the reaction was quenched by the addition of sat. aq. Na₂S₂O₃ (100 mL), diluted with water (50 mL), and then extracted with Et₂O (3 \times 75 mL). The combined organic layers were washed with sat. aq. Na₂S₂O₃ $(1 \times 100 \,\mathrm{mL})$, brine $(1 \times 100 \,\mathrm{mL})$, dried (MgSO₄), filtered and concentrated in vacuo. The residue was triturated with 4:1 hexanes-Et₂O, the precipitated Ph₃PO was removed by filtration, and the filtrate was concentrated under reduced pressure. The residue was purified by flash chromatography on silica gel (gradient: 1–2% Et₂O in hexanes) to give 37 (11.12 g, 98%) as a colourless oil. $R_{\rm f} = 0.19$ (silica gel, 24 : 1 hexanes–EtOAc); $[a]_{\rm D}^{25} + 29.8^{\circ}$ (c 0.45 in CHCl₃); $v_{\text{max}}/\text{cm}^{-1}$ (film) 2953, 1613, 1463, 1252, 1092, 909, 832; $\delta_{\rm H}$ (500 MHz, CDCl₃) 7.23 (2 H, d, J 8.6 Hz, ArH), 6.85 (2 H, d, J 8.6 Hz, ArH), 4.49 (1 H, d, J 11.4 Hz, OCH₂Ar), 4.44 (1 H, d, J 11.4 Hz, OC H_2 Ar), 3.78 (3 H, s, ArOC H_3), 3.78–3.81 (1 H, m, 19-H), 3.67–3.72 (2 H, m, 21-H and 24-H), 3.26 (1 H, ddd, J 9.2, 4.4 and 2.7 Hz, 25-H), 3.14–3.21 (2 H, m, 17-H and 17-H), 2.04–2.10 (1 H, m, 18-H), 1.88–1.95 (1 H, m, 18-H), 1.41–1.67 (6 H, m, 20-H, 20-H, 22-H, 23-H, 26-H and 27-H), 1.19–1.39 (6 H, m, 22-H, 23-H, 26-H, 27-H, 28-H and 28-H), 0.85–0.89 [30 H, m, 28-CH₃, $SiC(CH_3)_3$, $SiC(CH_3)_3$ and $SiC(CH_3)_3$, 0.07 (3 H, s, $SiCH_3$), 0.06 $(3 \text{ H}, \text{ s}, \text{SiC}H_3), 0.05 (3 \text{ H}, \text{ s}, \text{SiC}H_3), 0.04 (3 \text{ H}, \text{ s}, \text{SiC}H_3), 0.02 (3 \text{ H}, \text{ s}, \text{SiC}H_3), 0.04 (3 \text{ H}, \text{ s}, \text{SiC}H_3), 0.05 (3 \text{ H}, \text{ s}, \text{SiC}H_3), 0.04 (3 \text{ H}, \text{ s}, \text{SiC}H_3), 0.05 (3 \text{ H}, \text{ s}, \text{SiC}H_3), 0.04 (3 \text{ H}, \text{ s}, \text{SiC}H_3), 0.05 (3 \text{ H}, \text{ s}, \text{SiC}H_3), 0.04 (3 \text{ H}, \text{ s}, \text{SiC}H_3), 0.05 (3 \text{ H}, \text{ s}, \text{SiC}H_3), 0.05 (3 \text{ H}, \text{ s}, \text{SiC}H_3), 0.05 (3 \text{ H}, \text{ s}, \text{SiC}H_3), 0.04 (3 \text{ H}, \text{ s}, \text{SiC}H_3), 0.05 (3 \text{ H}, \text{s}, \text{SiC}H_3), 0.05 (3$ H, s, SiC H_3), -0.01 (3 H, s, SiC H_3); δ_C (125 MHz, CDCl₃) 159.0, 131.2, 129.2, 113.7, 81.9, 72.7, 71.9, 69.8, 69.5, 55.2, 44.4, 41.5, 34.2, 28.7, 28.4, 26.7, 25.9, 25.9, 25.8, 22.8, 18.0, 18.0, 18.0, 14.1, 2.3, -4.2, -4.2, -4.3, -4.3, -4.4, -4.4; HRMS (ES⁺) m/z calc. for C₃₉H₇₇IO₅Si₃Na ([MNa]⁺): 859.4015, found: 859.3994.

Alcohol 38

DDQ (3.457 g, 15.2 mmol) was added in one portion to a vigorously stirred solution of 37 (7.52 g, 8.96 mmol) in CH₂Cl₂ (220 mL) and aqueous pH 7.0 buffer (75 mL) at room temperature. After 1 h, the reaction was quenched by the addition of sat. aq. NaHCO₃ (200 mL). The mixture was diluted with CH₂Cl₂ (100 mL), the layers were separated, and the aqueous layer was extracted with CH_2Cl_2 (3 × 100 mL). The combined organic layers were washed with brine (1 × 200 mL), dried (MgSO₄), filtered and concentrated in vacuo. The residue was purified by flash chromatography on silica gel (gradient: 2–4% EtOAc in hexanes) to give 38 (5.80 g, 90%) as a colourless oil. $R_f = 0.27$ (silica gel, 23: 2 hexanes–EtOAc); $[a]_D^{25}$ +10.2° (c 0.99 in CHCl₃); v_{max} /cm⁻¹ (film) 3566, 2955, 1462, 1360, 1255, 1005, 938; $\delta_{\rm H}$ (500 MHz, CDCl₃) 3.77–3.82 (1 H, m, 19-H), 3.69–3.74 (1 H, m, 21-H), 3.46–3.51 (1 H, m, 24-H), 3.37-3.41 (1 H, m, 25-H), 3.13-3.21 (2 H, m, 17-H and 17-H), 2.10 (1 H, br s, OH), 2.02–2.08 (1 H, m, 18-H), 1.88– 1.95 (1 H, m, 18-H), 1.63–1.68 (2 H, m, 20-H, 23-H), 1.27–1.52 (10 H, m, 20-H, 22-H, 22-H, 23-H, 26-H, 26-H, 27-H, 27-H, 28-H and 28-H), 0.87-0.90 [30 H, m, 28-C H_3 , SiC(C H_3)₃, SiC(C H_3)₃ and $SiC(CH_3)_3$, 0.08 (3 H, s, $SiCH_3$), 0.07 (3 H, s, $SiCH_3$), 0.06 $(3 \text{ H}, \text{ s}, \text{SiC}H_3), 0.05 (3 \text{ H}, \text{ s}, \text{SiC}H_3), 0.05 (3 \text{ H}, \text{ s}, \text{SiC}H_3), 0.03$ (3 H, s, SiC H_3); δ_H (125 MHz, CDCl₃) 75.3, 72.7, 69.7, 69.0, 44.1, 41.4, 33.6, 32.3, 28.7, 28.1, 25.9, 25.9, 25.8, 22.7, 18.0, 17.9, 17.9, 14.1, 2.0, -4.0, -4.2, -4.3, -4.4, -4.4, -4.7; HRMS (ES⁺) m/z calc. for $C_{31}H_{70}IO_4Si_3$ ([MH]⁺): 717.3621, found 717.3616.

Pivalate 39

Pyridine (1.43 mL, 17.6 mmol), freshly distilled PivCl (2.16 mL, 17.6 mmol), and a catalytic amount of 4-DMAP were added to a stirred solution of alcohol 38 (2.13 g, 2.93 mmol) in CH₂Cl₂ (15 mL) at 0 °C. After 2 h, the mixture was warmed to room temperature for 4 h before additional pyridine (1.43 mL, 17.6 mmol) and PivCl (2.16 mL, 17.6 mmol) were added. After a further 16 h, the reaction was then guenched by the addition of sat. aq. NaHCO₃ (50 mL), and extracted with CH₂Cl₂ (3 × 30 mL). The combined organic layers were washed with sat. aq. NaHCO₃ (1 × 50 mL), brine (1 × 50 mL), dried (MgSO₄), filtered and concentrated in vacuo. The residue was purified by flash chromatography on silica gel (gradient: 1–4% EtOAc in hexanes) to give 39 (1.537 g, 65%) as a colourless oil. $R_f = 0.48$ (silica gel, 23: 2 hexanes–EtOAc); $[a]_D^{25}$ +26.9° (c 1.32 in CHCl₃); v_{max} /cm⁻¹ (film) 2955, 1728, 1428, 1256, 1093, 939, 837; $\delta_{\rm H}$ (500 MHz, CDCl₃) 4.72 (1 H, dt, J 10.1, 3.2 Hz, 25-H), 3.78 (1 H, td, J 6.7, 4.6 Hz, 19-H), 3.71 (1 H, qn, J 5.6 Hz, 21-H), 3.56–3.60 (1 H, m, 24-H), 3.14 (2 H, t, J 7.3 Hz, 17-H and 17-H), 2.00-2.07 (1 H, m, 18-H), 1.87-1.94 (1 H, m, 18-H), 1.59–1.68 (3 H, m, 20-H, 22-H and 26-H), 1.43– 1.54 (3 H, m, 20-H, 23-H and 26-H), 1.16 [9 H, s, $O_2CC(CH_3)_3$], 1.14–1.36 (6 H, m, 22-H, 23-H, 27-H, 27-H, 28-H, 28-H), 0.85– 0.89 [30 H, m, 28-C H_3 , SiC(C H_3)₃, SiC(C H_3)₃ and SiC(C H_3)₃], $0.09 (3 \text{ H}, \text{ s}, \text{SiC}H_3), 0.05 (3 \text{ H}, \text{ s}, \text{SiC}H_3), 0.04 (3 \text{ H}, \text{ s}, \text{SiC}H_3),$ $0.04 (3 \text{ H, s, SiC}H_3), 0.03 (3 \text{ H, s, SiC}H_3), 0.02 (3 \text{ H, s, SiC}H_3); \delta_C$ (125 MHz, CDCl₃) 177.8, 75.4, 72.2, 69.7, 69.1, 44.4, 41.5, 38.7, 33.8, 28.2, 27.3, 27.1, 27.0, 26.5, 25.9, 25.8, 25.8, 22.4, 18.0, 17.9, 17.9, 14.0, 1.8, -4.3, -4.3, -4.4, -4.4, -4.5, -4.5; HRMS (ES⁺) m/z calc. for $C_{36}H_{78}IO_5Si_3$ ([MH]⁺): 801.4196, found: 801.4191.

(2S)-5-Oxotetrahydrofuran-2-carboxylic acid 41 24

A solution of 2 N H₂SO₄ (600 mL) and a solution of NaNO₂ (82.8 g, 1.20 mol) in water (600 mL) were slowly added simultaneously to a vigorously stirred suspension of L-glutamic acid (147.13 g, 1.00 mol) in water (1 L) over 1 h (CAUTION: reaction is highly exothermic and involves the release of large quantities of NO₂ gas). Upon completion of the additions, the reaction was stirred at room temperature for a further 20 h, and then concentrated under reduced pressure, and azeotroped with toluene $(2 \times 250 \,\mathrm{mL})$. The residue was then triturated with boiling acetone $(4 \times 500 \text{ mL})$, the solids removed, and the filtrate was concentrated in vacuo to give a highly viscous, light yellow oil. The residue was dried under high vacuum (0.1 mmHg) for 1 h, then taken up in hot EtOAc (1 L), and stirred hot with NaSO₄ (100 g) for 1 h, before filtration to remove the solids, and concentration of the filtrate under reduced pressure. The residue was then stored at -20 °C overnight, where it solidified. The solid residue was triturated with cold CHCl₃, filtered, and washed with cold CHCl₃. The solid was collected and dried under vacuum (0.1 mmHg) to give 41 (62.4 g, 48%) as a colourless solid. The spectroscopic data were in accord with the literature. 24 $\delta_{\rm H}$ (400 MHz, CDCl₃) 8.12 (1 H, s, CO₂H) 4.99-5.02 (1 H, s, 2-H), 2.55-2.70 (3 H, m, 3-H, 4-H and 4-H), 2.36-2.44 (1 H, m, 3-H).

Lactone 43²⁵

(COCl)₂ (8.72 mL, 100.0 mmol) was added dropwise to a stirred solution of acid 41²⁴ (10.06 g, 77.0 mmol) in CH₂Cl₂ (100 mL) with a catalytic amount of DMF (0.1 mL) at room temperature in a round-bottomed flask equipped with a needle outlet to a gas bubbler. The solution was stirred until gas evolution ceased (ca. 3 h), and was then concentrated under reduced pressure, and the residue azeotroped with benzene (1 \times 50 mL) to give a light pink residue that was dissolved in THF (250 mL) and cooled to −78 °C. Freshly prepared *n*-butylmagnesium bromide (73.5 mL, 1.0 M in THF, 73.5 mmol) was then added dropwise, and the solution was stirred for 1.5 h at -78 °C before being quenched by the addition of sat. aq. NH₄Cl (500 mL). After warming to room temperature, the mixture was extracted with EtOAc (3 \times 200 mL), and the combined organic layers were washed with sat. aq. NaHCO₃ (1 \times 400 mL), brine (1 \times 400 mL), dried (MgSO₄), filtered and concentrated in vacuo. The residue was purified by flash chromatography on silica gel (gradient: 33-50% EtOAc in hexanes) to give 43 (10.27 g, 82%) as a light yellow solid. $R_{\rm f} =$ 0.46 (silica gel, 1 : 1 hexanes–EtOAc); mp 36–37 °C; $[a]_D^{25}$ –2.8° (c 1.07 in CHCl₃); $v_{\text{max}}/\text{cm}^{-1}$ (film) 2962, 2889, 1781, 1723, 1459, 1135, 1041; δ_H (600 MHz, CDCl₃) 4.80–4.82 (1 H, m, 24-H), 2.44-2.62 (5 H, m, 22-H, 22-H, 23-H, 26-H and 26-H), 2.16-2.23 (1 H, m, 23-H), 1.52–1.57 (2 H, m, 27-H and 27-H), 1.26–1.32 (2 H, m, 28-H and 28-H), 0.88 (3 H, t, J 7.4 Hz, 28-C H_3); δ_C (150 MHz, CDCl₃) 207.5, 176.0, 81.6, 38.4, 27.2, 24.8, 24.5, 22.1, 13.7; HRMS (ES⁺) m/z calc. for $C_9H_{14}O_3Na$ ([MNa]⁺): 193.0835, found: 193.0831.

Alcohol 44 25

K-Selectride® (66.0 mL, 1.0 M in THF, 66.0 mmol) was added dropwise to a stirred solution of ketone 43 (10.21 g, 60.0 mmol) in THF (240 mL) at -78 °C, and the resulting mixture was stirred at -78 °C for 1 h before warming to -10 °C for an additional 2 h. The reaction was then quenched by the careful addition of sat. aq. NaHCO₃ (500 mL) at -10 °C, and the mixture was warmed to room temperature before extraction with EtOAc (3 \times 250 mL). The combined organic layers were washed with sat. aq. NaHCO₃ (1 \times 500 mL), brine (1 \times 500 mL), dried (MgSO₄), filtered and concentrated in vacuo. The residue was purified by flash chromatography on silica gel (gradient: 15-50% EtOAc in hexanes) to give 44 (7.43 g, 71%) as an oily solid. $R_f = 0.34$ (silica gel, 3: 2 hexanes–EtOAc); $[a]_D^{25}$ +25.9° (c 1.38 in CHCl₃); v_{max} /cm⁻¹ (film) 3460, 2931, 2861, 1766, 1461, 1184, 914; $\delta_{\rm H}$ (500 MHz, CDCl₃) 4.39 (1 H, td, J 7.3, 4.3 Hz, 24-H), 3.50–3.53 (1 H, m, 25-H), 2.70 (1 H, br s, OH), 2.56 (1 H, ddd, J 17.7, 9.9 and 5.2 Hz, 22-H), 2.43–2.51 (1 H, m, 22-H), 2.16–2.23 (1 H, m, 23-H), 2.04– 2.12 (1 H, m, 23-H), 1.40–1.53 (3 H, m, 26-H, 27-H and 27-H), 1.26–1.35 (3 H, m, 26-H, 28-H and 28-H), 0.86 (3 H, t, J 7.1 Hz, 28-C H_3); δ_C (125 MHz, CDCl₃) 177.6, 83.0, 73.3, 32.5, 28.6, 27.5, 23.9, 22.4, 13.8; HRMS (ES⁺) m/z calc. for $C_9H_{16}O_3Na$ ([MNa⁺]): 195.0992, found 195.0985.

p-Methoxybenzyl ether 46

La(OTf)₃ (0.851 g, 1.45 mmol) was added in one portion to a stirred solution of alcohol 44 (5.00 g, 29.0 mmol) and p-

methoxybenzyl-2,2,2-trichloroacetimidate 47 (13.02 g, 46.5 mmol) in toluene (100 mL) at 0 °C. After 10 min the solution was concentrated in vacuo, and the residue was purified by flash chromatography on silica gel (gradient: 20-25% EtOAc in hexanes) to give 46 (7.69 g, 91%) as a light yellow oil. $R_f = 0.47$ (silica gel, 1 : 1 hexanes— EtOAc); $[a]_D^{25}$ +4.8° (c 1.47 in CHCl₃); v_{max} /cm⁻¹ (film) 2928, 1774, 1726, 1586, 1358, 1177, 821; $\delta_{\rm H}$ (600 MHz, CDCl₃) 7.24 (2 H, d, J 8.1 Hz, ArH), 6.86 (2 H, d, J 8.1 Hz, ArH), 4.49–4.57 (3 H, m, 24-H and OC H_2 Ar), 3.78 (3 H, s, ArOC H_3), 3.36–3.39 (1 H, m, 25-H), 2.51-2.56 (1 H, m, 22-H), 2.40-2.46 (1 H, m, 22-H), 2.15–2.21 (1 H, m, 23-H), 1.91–1.97 (1 H, m, 23-H), 1.51–1.56 (2 H, m, 26-H and 26-H), 1.29-1.39 (4 H, m, 27-H, 27-H, 28-H and 28-H), 0.88 (3 H, t, J 7.0 Hz, 28-C H_3); δ_c (150 MHz, CDCl₃) 177.4, 159.1, 130.2, 129.4, 113.7, 81.9, 80.0, 72.2, 55.1, 29.4, 28.4, 27.4, 24.3, 22.6, 13.9; HRMS (ES⁺) m/z calc. for $C_{17}H_{24}O_4Na$ ([MNa]⁺): 315.1567, found: 315.1565.

Lactol 48a

A solution of DIBAL-H (3.3 mL, 1.0 M in toluene, 3.3 mmol) was added dropwise over 15 min to a stirred solution of lactone 46 (0.868 g, 3.0 mmol) in toluene (15.0 mL) at $-78 \,^{\circ}\text{C}$. After stirring for an additional 30 min at -78 °C, the reaction was quenched by the addition of EtOAc (15 mL) and warmed to room temperature. The solution was then poured into a solution of sat. aq. Rochelle's salt (50 mL) and stirred vigorously at room temperature for 2 h. The mixture was then extracted with EtOAc (3 \times 20 mL), and the combined organic layers were washed with brine $(1 \times 50 \text{ mL})$, dried (MgSO₄), filtered and concentrated in vacuo. The residue was purified by flash chromatography on silica gel (20% EtOAc in hexanes) to give 48a (0.786 g, 89%) as a light yellow oil and as an inseparable 1:1 mixture of anomers. $R_f = 0.34$ (silica gel, 1:1 hexanes–EtOAc); $[a]_D^{25}$ –15.8° (c 1.09 in CHCl₃); v_{max} /cm⁻¹ (film) 3409, 2954, 1612, 1442, 1174, 982, 822. HRMS (ES⁺) m/z calc. for $C_{17}H_{26}O_4Na$ ([MNa]⁺): 317.1723, found: 317.1722.

Data for anomer (a). $\delta_{\rm H}$ (500 MHz, C₆D₆) 7.30 (2 H, d, *J* 8.4 Hz, Ar*H*), 6.80 (2 H, d, *J* 8.4 Hz, Ar*H*), 5.56–5.58 (1 H, m, 21-H), 4.63 (1 H, d, *J* 11.3 Hz, OC*H*₂Ar), 4.51 (1 H, d, *J* 11.3 Hz, OC*H*₂Ar), 4.39 (1 H, app q, *J* 6.5 Hz, 24-H), 4.08 (1 H, d, *J* 2.6 Hz, O*H*), 3.29 (3 H, s, ArOC*H*₃), 3.23–3.26 (1 H, m, 25-H), 1.77–1.89 (3 H, m, 22-H, 23-H and 23-H), 1.54–1.64 (1 H, m, 26-H), 1.31–1.52 (4 H, m, 22-H, 26-H, 27-H and 27-H), 1.21–1.28 (2 H, m, 28-H and 28-H), 0.87 (3 H, t, *J* 7.3 Hz, 28-C*H*₃); $\delta_{\rm C}$ (125 MHz, C₆D₆) 159.6, 131.8, 129.6, 113.9, 99.0, 81.2, 80.3, 72.4, 54.7, 33.4, 30.7, 28.1, 26.4, 23.3, 14.3.

Data for anomer (b). $\delta_{\rm H}$ (500 MHz, C₆D₆) 7.26 (2 H, d, *J* 8.4 Hz, Ar*H*), 6.78 (2 H, d, *J* 8.4 Hz, Ar*H*), 5.50 (1 H, dd, *J* 7.0, 5.6 Hz, 21-H), 4.51 (1 H, d, *J* 11.1 Hz, OC*H*₂Ar), 4.47 (1 H, d, *J* 11.1 Hz, OC*H*₂Ar), 4.25 (1 H, d, *J* 7.0 Hz, O*H*), 4.02 (1 H, ddd, *J* 7.5, 7.2 and 4.6 Hz, 24-H) 3.31 (3 H, s, ArOC*H*₃), 3.14–3.17 (1 H, m, 25-H), 1.77–1.89 (1 H, m, 22-H), 1.70–1.77 (1 H, m, 23-H), 1.54–1.64 (2 H, m, 22-H and 26-H), 1.31–1.52 (4 H, m, 23-H, 26-H, 27-H and 27-H), 1.21–1.28 (2 H, m, 28-H and 28-H), 0.87 (3 H, t, *J* 7.3 Hz, 28-C*H*₃); $\delta_{\rm C}$ (125 MHz, C₆D₆) 159.7, 131.0, 129.8, 114.1, 98.8, 81.8, 81.5, 72.4, 54.7, 34.7, 31.1, 28.1, 25.5, 23.3, 14.3.

Methyl furanoside 48b

PPTS (0.035 g, 0.14 mmol) was added in one portion to a stirred solution of lactol **48a** (0.400 g, 1.4 mmol) and 2,2-dimethoxypropane (0.26 mL, 2.1 mmol) in MeOH (5 mL) at room temperature. After 16 h the reaction was concentrated *in vacuo*, and then partitioned between brine (20 mL) and EtOAc (20 mL). The layers were separated, and the aqueous layer was extracted with EtOAc (3 × 15 mL). The combined organic layers were washed with brine (1 × 25 mL), dried (MgSO₄), filtered and concentrated *in vacuo*. The residue was purified by flash chromatography on silica gel (10% EtOAc in hexanes) to give **48b** (0.375 g, 87%) as a light yellow oil. 1 H-NMR analysis revealed the compound to be a 1.2 : 1 mixture of anomers at C-21 which, for the purposes of characterisation, could be separated *via* careful flash chromatography on silica gel (10% Et₂O in hexanes).

Data for anomer (a). $R_{\rm f}=0.75$ (silica gel, 1 : 1 hexanes—EtOAc); $[a]_{\rm D}^{25}+47.3^{\circ}$ (c 4.24 in CHCl₃); $\nu_{\rm max}/{\rm cm}^{-1}$ (film) 2954, 2833, 1612, 1459, 1202, 1040, 821; $\delta_{\rm H}$ (500 MHz, C₆D₆) 7.29 (2 H, d, J 8.6 Hz, ArH), 6.80 (2 H, d, J 8.6 Hz, ArH), 4.95 (1 H, dd, J 3.9, 2.5 Hz, 21-H), 4.68 (1 H, d, J 11.3 Hz, OC H_2 Ar), 4.53 (1 H, d, J 11.3 Hz, OC H_2 Ar), 4.22–4.25 (1 H, m, 24-H), 3.32 (3 H, s, ArOC H_3), 3.28–3.32 (1 H, m, 25-H), 3.26 (3 H, s, OC H_3), 1.76–1.84 (3 H, m, 22-H, 23-H and 23-H), 1.31–1.51 (5 H, m, 22-H, 26-H, 26-H, 27-H and 27-H), 1.21–1.30 (2 H, m, 28-H and 28-H), 0.87 (3 H, t, J 7.3 Hz, 28-C H_3); $\delta_{\rm C}$ (125 MHz, C₆D₆) 159.6, 132.1, 129.6, 113.9, 105.6, 81.0, 80.4, 77.6, 54.7, 54.5, 32.5, 30.9, 28.3, 26.2, 23.3, 14.3; HRMS (ES⁺) m/z calc. for C₁₈H₂₈O₄Na ([MNa]⁺): 331.1880, found: 331.1870.

Data for anomer (b). $R_{\rm f}=0.71$ (silica gel, 1 : 1 hexanes–EtOAc); $[a]_{\rm D}^{25}-59.3^{\circ}$ (c 5.03 in CHCl₃); $\nu_{\rm max}/{\rm cm}^{-1}$ (film) 2952, 2834, 1612, 1458, 1205, 1040, 821; $\delta_{\rm H}$ (500 MHz, ${\rm C_6D_6}$) 7.37 (2 H, d, J 8.5 Hz, ArH), 6.70 (2 H, d, J 8.5 Hz, ArH), 4.95 (1 H, d, J 11.2 Hz, OC H_2 Ar), 4.86 (1 H, d, J 4.5 Hz, 21-H), 4.61 (1 H, d, J 11.2 Hz, OC H_2 Ar), 4.04–4.08 (1 H, m, 24-H), 3.33 (3 H, s, ArOC H_3), 3.33–3.36 (1 H, m, 25-H), 3.25 (3 H, s, OC H_3), 1.81–1.84 (1 H, m, 22-H), 1.61–1.70 (1 H, m, 23-H), 1.44–1.54 (3 H, m, 22-H, 23-H and 26-H), 1.34–1.42 (3 H, m, 26-H, 27-H and 27-H), 1.18–1.29 (2 H, m, 28-H and 28-H), 0.86 (3 H, t, J 7.3 Hz, 28-C H_3); $\delta_{\rm C}$ (125 MHz, C₆D₆) 159.5, 132.4, 129.5, 113.9, 105.3, 84.5, 83.2, 73.1, 54.8, 54.4, 33.2, 31.5, 28.1, 26.4, 23.2, 14.3; HRMS (ES⁺) m/z calc. for C₁₈H₂₈O₄Na ([MNa]⁺): 331.1880, found: 331.1866.

Acetate 48c

Acetic anhydride (0.35 mL, 3.8 mmol) was added to stirred solution of lactol **48a** (0.786 g, 2.67 mmol), Et₃N (0.78 mL, 5.6 mmol) and 4-DMAP (0.0070 g, 0.08 mmol) in CH₂Cl₂ (13 mL) at room temperature. After 90 min, the mixture was concentrated *in vacuo*, and the residue was purified by flash chromatography on silica gel (25% EtOAc in hexanes) to give **48c** (0.807 g, 90%) as a colourless oil. ¹H-NMR analysis revealed the compound to be a 1: 1 mixture of anomers which, for the purposes of characterisation, could be separated *via* careful flash chromatography on silica gel (10% Et₂O in hexanes).

Data for anomer (a). $R_{\rm f} = 0.42$ (silica gel, 4 : 1 hexanes–Et₂O); $[a]_{\rm D}^{25} + 34.2^{\circ}$ (c 4.49 in CH₂Cl₂); $v_{\rm max}/{\rm cm}^{-1}$ (film) 2954, 1741, 1612, 1466, 1302, 1086, 970, 823; $\delta_{\rm H}$ (600 MHz, C₆D₆) 7.24 (2 H, d, J

8.3 Hz, Ar*H*), 6.78 (2 H, d, *J* 8.3 Hz, Ar*H*), 6.51 (1 H, d, *J* 5.1 Hz, 21-H), 4.55 (1 H, d, *J* 11.3 Hz, OC H_2 Ar), 4.47 (1 H, d, *J* 11.3 Hz, OC H_2 Ar), 4.28–4.31 (1 H, m, 24-H), 3.31 (3 H, s, ArOC H_3), 3.20 (1 H, app q, *J* 5.7 Hz, 25-H), 1.81–1.87 (1 H, m, 22-H), 1.67–1.74 (2 H, m, 22-H and 23-H), 1.66 (3 H, s, O₂CC H_3), 1.38–1.45 (4 H, m, 23-H, 26-H, 26-H, and 27-H), 1.26–1.32 (1 H, m, 27-H), 1.18–1.25 (2 H, m, 28-H and 28-H), 0.85 (3 H, t, *J* 7.3 Hz, 28-C H_3); $\delta_{\rm C}$ (150 MHz, C₆D₆) 169.5, 159.6, 131.7, 129.6, 113.9, 99.3, 82.2, 80.5, 72.5, 54.7, 32.1, 30.5, 28.2, 25.4, 23.2, 21.0, 14.3; MS (ES⁺) m/z calc. for C₁₉H₂₈O₅Na ([MNa]⁺): 359.18; found: 359.20.

Data for anomer (b). $R_{\rm f} = 0.33$ (silica gel, 4 : 1 hexanes–Et₂O); $[a]_{\rm D}^{25} - 36.1^{\circ}$ (c 3.60 in CH₂Cl₂); $\nu_{\rm max}/{\rm cm}^{-1}$ (film) 2955, 1736, 1612, 1466, 1302, 1082, 958, 849; $\delta_{\rm H}$ (600 MHz, C₆D₆) 7.36 (2 H, d, J 8.4 Hz, ArH), 6.80 (2 H, d, J 8.4 Hz, ArH), 6.40 (1 H, d, J 3.7 Hz, 21-H), 4.86 (1 H, d, J 11.3 Hz, OC H_2 Ar), 4.63 (1 H, d, J 11.3 Hz, OC H_2 Ar), 4.00–4.03 (1 H, m, 24-H), 3.30 (3 H, s, ArOC H_3), 3.29–3.33 (1 H, m, 25-H), 1.69 (3 H, s, O₂CC H_3), 1.66–1.69 (1 H, m, 22-H), 1.39–1.52 (5 H, m, 22-H, 23-H, 23-H, 26-H and 27-H), 1.32–1.38 (2 H, m, 26-H and 27-H), 1.18–1.26 (2 H, m, 28-H and 28-H), 0.86 (3 H, t, J 7.2 Hz, 28-C H_3); $\delta_{\rm C}$ (150 MHz, C₆D₆) 169.4, 159.6, 132.0, 129.8, 113.9, 98.8, 85.5, 81.8, 72.9, 54.7, 32.6, 31.3, 28.0, 25.6, 23.2, 21.1, 14.3; MS (ES⁺) m/z calc. for C₁₉H₂₈O₅Na ([MNa]⁺): 359.18; found: 359.17.

trans-Allyltetrahydrofuran 49

To a stirred solution of acetate 48c (13.15 g, 39.1 mmol) and allyltrimethylsilane (15.5 mL, 97.5 mmol) in CH_2Cl_2 (200 mL) was added TMSOTf (0.71 mL, 3.9 mmol) dropwise at -78 °C. After 15 min, the reaction was quenched by the addition of sat. aq. NaHCO₃ (200 mL) and warmed to room temperature, before extraction with Et₂O (3 \times 150 mL). The combined organic layers were washed with brine (1 × 150 mL), dried (MgSO₄), filtered and concentrated in vacuo. ¹H-NMR analysis of the crude reaction mixture indicated the presence of a 3:1 mixture of diastereomers, based on the integration of the corresponding 21-H and 24-H protons. The major diastereomer was obtained in pure form after flash chromatography on silica gel (gradient: 2-10% Et₂O in hexanes) to give 49 (9.41 g, 75%) as a colourless oil. $R_f = 0.32$ (silica gel, 4 : 1 hexanes–Et₂O); $[a]_D^{25}$ –16.9° (c 1.33 in CHCl₃); $v_{\rm max}/{\rm cm}^{-1}$ (film) 3072, 2942, 2860, 1608, 1461, 1173, 1038, 908; $\delta_{\rm H}$ (500 MHz, C₆D₆) 7.35 (2 H, d, J 8.6 Hz, ArH), 6.81 (2 H, d, J 8.6 Hz, ArH), 5.89 (1 H, ddt, J 17.2, 10.2 and 7.0 Hz, 19-H), 5.02– 5.09 (2 H, m, 18-H and 18-H), 4.82 (1 H, d, J 11.4 Hz, OCH₂Ar),4.61 (1 H, d, J 11.4 Hz, OCH₂Ar), 3.92 (1 H, dt, J 7.8, 6.5 Hz, 24-H), 3.81 (1 H, app qn, J 6.5 Hz, 21-H), 3.31–3.36 (1 H, m, 25-H), 3.29 (3 H, s, ArOCH₃), 2.36 (1 H, ddd, J 13.6, 7.0 and 6.5 Hz, 20-H), 2.20 (1 H, ddd, J 13.6, 7.0 and 6.5 Hz, 20-H), 1.23-1.61 (10 H, m, 22-H, 22-H, 23-H, 23-H, 26-H, 26-H, 27-H, 27-H, 28-H and 28-H), 0.89 (3 H, t, J 7.3 Hz, 28-C H_3); δ_C (125 MHz, C_6D_6) 159.5, 135.7, 132.2, 129.7, 116.6, 113.9, 82.6, 81.4, 78.9, 72.8, 54.7, 40.8, 31.3, 30.6, 28.3, 27.9, 23.2, 14.3; HRMS (ES+) m/z calc. for $C_{20}H_{30}O_3Na$ ([MNa]⁺): 341.2087, found: 341.2096.

Aldehyde 50

A solution of alkene **49** (4.75 g, 15.0 mmol) in CH_2Cl_2 (150 mL) was cooled to -78 °C and a stream of ozone (*ca.* 10% in oxygen) was bubbled through the mixture until TLC analysis confirmed

the complete consumption of starting material, then oxygen was bubbled through the solution for an additional 20 min to remove excess ozone. PPh₃ (6.56 g, 25.0 mmol) was added to the solution, which was then stirred and warmed to room temperature over 1 h. The mixture was then concentrated under reduced pressure, and triturated with 4: 1 hexanes-Et₂O. The precipitated Ph₃PO was then removed by filtration, and the filtrate was concentrated in vacuo. The residue was purified by flash chromatography on silica gel (20% EtOAc in hexanes) to give 50 (4.33 g, 90%) as a colourless oil. $R_f = 0.16$ (silica gel, 4 : 1 hexanes–EtOAc); $[a]_D^{25} - 17.8^\circ$ (c 1.12) in CHCl₃); $v_{\text{max}}/\text{cm}^{-1}$ (film) 2946, 2728, 1724, 1610, 1463, 1174, 818; $\delta_{\rm H}$ (500 MHz, CDCl₃) 9.80 (1 H, dd, J 2.6, 1.9 Hz, 19-H), 7.26 (2 H, d, J 8.7 Hz, ArH), 6.85 (2 H, d, J 8.7 Hz, ArH), 4.60 (1 H, d, J 11.2 Hz, OCH₂Ar), 4.51 (1 H, d, 11.2 Hz, OCH₂Ar), 4.34 (1 H, dddd, J 7.4, 6.9, 6.5 and 5.3 Hz, 21-H), 3.94–3.98 (1 H, m, 24-H), 3.79 (3 H, s, ArOCH₃), 3.27-3.31 (1 H, m, 25-H), 2.68 (1 H, ddd, J 16.1, 7.4 and 2.6 Hz, 20-H), 2.59 (1 H, ddd, J 16.1, 5.3 and 1.9 Hz, 20-H), 2.08 (1 H, dddd, J 12.2, 8.5, 6.5 and 6.4 Hz, 22-H), 1.90 (1 H, dddd, J 12.4, 8.5, 7.0 and 5.7 Hz, 23-H), 1.66 (1 H, dddd, J 12.4, 9.4, 7.8 and 6.4 Hz, 23-H), 1.57 (1 H, dddd, J 12.2, 9.4, 6.9 and 5.7 Hz, 22-H), 1.39–1.47 (3 H, m, 26-H, 27-H and 27-H), 1.24–1.33 (3 H, m, 26-H, 28-H and 28-H), 0.88 (3 H, t, J 7.1 Hz, 28-C H_3); δ_C (125 MHz, CDCl₃) 201.5, 159.0, 131.1, 129.4, 113.6, 82.2, 80.9, 74.2, 72.4, 55.2, 49.6, 31.1, 30.6, 27.7, 27.5, 22.8, 14.0; HRMS (ES⁺) m/z calc. for $C_{19}H_{28}O_4Na$ ([MNa]⁺): 343.1880, found: 343.1882.

Alcohol 51

AllylMgBr (27.0 mL, 1.0 M in Et₂O, 27.0 mmol) was added to a stirred solution of (+)-Ipc₂BOMe (8.54 g, 27.0 mmol) in Et₂O (120 mL) at -78 °C. After 30 min, the mixture was warmed to room temperature for 1 h, then re-cooled to -78 °C, where a solution of aldehyde 50 (3.78 g, 11.8 mmol) in Et₂O (30 mL) was added dropwise, and the mixture stirred for 3 h at that temperature. The reaction was quenched by the addition of MeOH (10 mL) and warmed to 0 °C, where 3 M aq. NaOH (50 mL) was added, followed by the dropwise addition of 35% aq. H₂O₂ (11 mL) over 30 min. After warming to room temperature overnight, the mixture was extracted with Et₂O (3 \times 50 mL), and the combined organic layers were washed with brine (1 × 100 mL), dried (MgSO₄), filtered and concentrated in vacuo. The residue was purified by flash chromatography on silica gel (gradient: 10–35% Et₂O in hexanes) to give 51 (2.95 g, 69%) as a colourless oil. $R_{\rm f} = 0.08$ (silica gel, 4 : 1 hexanes–EtOAc); $[a]_D^{25}$ –13.9° (c 2.35 in CHCl₃); $\nu_{\rm max}/{\rm cm}^{-1}$ (film) 3447, 3067, 2924, 1609, 1461, 1243, 1076, 911; $\delta_{\rm H}$ (500 MHz, CDCl₃) 7.27 (2 H, d, J 8.6 Hz, ArH), 6.86 (2 H, d, J 8.6 Hz, ArH), 5.82–5.86 (1 H, m, 17-H), 5.08–5.13 (2 H, m, 16-H and 16-H), 4.59 (1 H, d, J 11.1 Hz, OCH₂Ar), 4.53 (1 H, d, 11.1 Hz, OCH_2Ar), 4.16 (1 H, dtd, J 7.0, 6.8 and 4.0 Hz, 21-H), 3.91–3.95 (2 H, m, 19-H and 24-H), 3.80 (3 H, s, ArOCH₃), 3.30–3.32 (1 H, m, 25-H), 2.23–2.32 (2 H, m, 18-H and 18-H), 1.85–1.94 (2 H, m, 22-H and 23-H), 1.79 (1 H, ddd, J 14.3, 8.5 and 3.8 Hz, 20-H), 1.59–1.71 (3 H, m, 20-H, 22-H and 23-H), 1.46–1.51 (2 H, m, 27-H and 27-H), 1.23–1.44 (4 H, m, 26-H, 26-H, 28-H and 28-H), 0.88 (3 H, t, J 7.1 Hz, 28-C H_3); δ_C (125 MHz, CDCl₃) 159.0, 135.2, 131.0, 129.5, 117.3, 113.6, 81.8, 81.0, 77.3, 72.3, 68.3, 55.2, 41.9, 40.5, 30.7, 30.5, 27.8, 27.7, 22.8, 14.0; HRMS (ES+) m/z calc. for C₂₂H₃₄O₄Na ([MNa]⁺): 385.2349, found: 385.2340.

t-Butyldimethylsilyl ether 52

Alcohol 51 (2.90 g, 8.0 mmol), imidazole (1.09 g, 16.0 mmol), and TBSCl (1.81 g, 12.0 mmol) were combined in CH₂Cl₂ (80 mL) at room temperature and the mixture was allowed to stir for 16 h. The reaction was then quenched by the addition of sat. aq. NH₄Cl (150 mL), and extracted with EtOAc (3 \times 80 mL). The combined organic layers were washed with sat. aq. NaHCO₃ (1 × 100 mL), brine (1 \times 100 mL), dried (MgSO₄), filtered and concentrated in vacuo. The residue was purified by flash chromatography on silica gel (10% EtOAc in hexanes) to give 52 (3.42 g, 90%) as a colourless oil. $R_f = 0.64$ (silica gel, 4 : 1 hexanes–EtOAc); $[a]_D^{25}$ –45.4° (c 1.14 in CHCl₃); $v_{\text{max}}/\text{cm}^{-1}$ (film) 3447, 3067, 2924, 1609, 1461, 1243, 1076, 911; $\delta_{\rm H}$ (500 MHz, CDCl₃) 7.29 (2 H, d, J 8.6 Hz, ArH), 6.87 (2 H, d, J 8.6 Hz, ArH), 5.83 (1 H, ddt, J 16.4, 10.8 and 7.2 Hz, 17-H), 5.03–5.06 (2 H, m, 16-H and 16-H), 4.73 (1 H, d, J 11.2 Hz, OCH₂Ar), 4.54 (1 H, d, J 11.2 Hz, OCH₂Ar), 3.91–4.01 (2 H, m, 19-H and 21-H), 3.85-3.87 (1 H, m, 24-H), 3.80 (3 H, s, $ArOCH_3$), 3.28–3.30 (1 H, m, 25-H), 2.20–2.31 (2 H, m, 18-H and 18-H), 1.93 (1 H, ddt, J 12.4, 8.7 and 6.4 Hz, 22-H), 1.82–1.84 (1 H, m, 23-H), 1.54-1.67 (3 H, m, 20-H, 20-H and 23-H), 1.41-1.48 (4 H, m, 22-H, 26-H, 27-H and 27-H), 1.24–1.35 (3 H, m, 26-H, 28-H and 28-H), 0.90 [9 H, s, SiC(CH₃)], 0.89 (3 H, t, J 7.3 Hz, 28-C H_3), 0.09 (3 H, s, SiC H_3), 0.08 (3 H, s, SiC H_3); $\delta_{\rm C}$ (125 MHz, CDCl₃) 159.8, 135.0, 131.5, 129.5, 116.8, 113.6, 82.1, 81.4, 75.9, 72.5, 69.4, 55.2, 43.2, 42.9, 31.4, 30.9, 27.9, 27.7, 25.9, 22.8, 18.1, 14.1, -4.4, -4.7; HRMS (ES⁺) m/z calc. for C₂₂H₃₄O₄Na ([MNa]⁺): 385.2349, found: 385.2340.

Aldehyde 53

A solution of alkene **52** (3.38 g, 7.1 mmol) in CH₂Cl₂ (70 mL) was cooled to -78 °C and a stream of ozone (ca. 10% in oxygen) was bubbled through the mixture until TLC analysis confirmed the complete consumption of starting material, then oxygen was bubbled through the solution for an additional 20 min to remove excess ozone. PPh₃ (3.25 g, 12.4 mmol) was added to the solution, which was then stirred and warmed to room temperature over 1 h. The mixture was then concentrated under reduced pressure, and triturated with 4: 1 hexanes–Et₂O. The precipitated Ph₃PO was then removed by filtration, and the filtrate was concentrated in vacuo. The residue was purified by flash chromatography on silica gel (gradient: 5–25% Et₂O in hexanes) to give **53** (3.02 g, 89%) as a colourless oil. $R_f = 0.56$ (silica gel, 3 : 1 hexanes–EtOAc); $[a]_D^{25}$ -35.1° (c 1.53 in CHCl₃); $v_{\text{max}}/\text{cm}^{-1}$ (film) 2960, 2729, 1724, 1585, 1463, 1249, 1090, 837; $\delta_{\rm H}$ (500 MHz, CDCl₃) 9.80 (1 H, dd, J 3.0, 2.2 Hz, 17-H), 7.29 (2 H, d, J 8.6 Hz, ArH), 6.86 (2 H, d, J 8.6 Hz, ArH), 4.66 (1 H, d, J 11.1 Hz, OCH₂Ar), 4.53 (1 H, d, J 11.1 Hz, OCH₂Ar), 4.37–4.39 (1 H, m, 19-H), 3.84–3.94 (2 H, m, 21-H and 24-H), 3.80 (3 H, s, ArOCH₃), 3.28-3.30 (1 H, m, 25-H), 2.64 (1 H, ddd, J 15.7, 5.4 and 2.2 Hz, 18-H), 2.51 (1 H, ddd, J 15.7, 5.5 and 3.0 Hz, 18-H), 1.95 (1 H, dddd, J 12.4, 8.7, 6.9 and 6.1 Hz, 22-H), 1.83 (1 H, dddd, J 12.4, 8.7, 6.9 and 5.9 Hz, 23-H), 1.75 (1 H, ddd, J 14.2, 8.1 and 3.4 Hz, 20-H), 1.70 (1 H, ddd, J 14.2, 8.9 and 4.9 Hz, 20-H), 1.61 (1 H, dddd, J 12.4, 9.8, 6.1 and 3.0 Hz, 23-H), 1.40–1.51 (4 H, m, 22-H, 26-H, 27-H and 27-H), 1.24–1.34 (3 H, m, 26-H, 28-H and 28-H), 0.88 (3 H, t, J 7.1 Hz, 28-CH₃), $0.87 [9 \text{ H}, \text{ s}, \text{SiC}(\text{C}H_3)_3], 0.10 (3 \text{ H}, \text{ s}, \text{SiC}H_3), 0.07 (3 \text{ H}, \text{ s}, \text{SiC}H_3);$ $\delta_{\rm C}$ (125 MHz, CDCl₃) 202.3, 159.0, 131.3, 129.4, 113.6, 82.0, 81.2, 75.5, 72.4, 66.4, 55.2, 51.8, 44.2, 31.5, 30.9, 27.8, 27.5, 25.8, 22.8, 18.0, 14.1, -4.6, -4.7; HRMS (ES⁺) m/z calc. for $C_{27}H_{46}O_5SiNa$ ([MNa]⁺): 501.3007, found: 501.2986.

Alcohol 54

NaBH₄ (0.354 g, 9.38 mmol) was added in one portion to a stirred solution of aldehyde 53 (3.01 g, 6.25 mmol) in MeOH (30 mL) at 0 °C. After 15 min, the reaction was quenched by the careful addition of sat. aq. NH₄Cl (30 mL) and then concentrated under reduced pressure to remove most of the MeOH. The mixture was then diluted with water (50 mL) and extracted with EtOAc (3 \times 50 mL). The combined organic layers were washed with brine (1 × 50 mL), dried (MgSO₄), filtered and concentrated in vacuo. The residue was purified by flash chromatography on silica gel (gradient: 10–20% EtOAc in hexanes) to give **54** (2.92 g, 97%) as a colourless viscous oil. $R_f = 0.35$ (silica gel, 3 : 1 hexanes–EtOAc); $[a]_{\rm D}^{25}$ -28.2° (c 1.16 in CHCl₃); $v_{\rm max}$ /cm⁻¹ (film) 3441, 2949, 2854, 1611, 1467, 1301, 1075, 808; $\delta_{\rm H}$ (500 MHz, CDCl₃) 7.27 (2 H, d, J 8.6 Hz, Ar*H*), 6.86 (2 H, d, *J* 8.6 Hz, Ar*H*), 4.66 (1 H, d, *J* 11.1 Hz, OCH₂Ar), 4.52 (1 H, d, J 11.1 Hz, OCH₂Ar), 4.12–4.13 (1 H, m, 19-H), 3.83-3.91 (3 H, m, 17-H, 21-H and 24-H), 3.80 (3 H, s, $ArOCH_3$), 3.69 (1 H, dt, J 10.8, 5.3 Hz, 17-H), 3.27–3.29 (1 H, m, 25-H), 2.38 (1 H, br s, OH), 1.79–1.98 (3 H, m, 20-H, 22-H and 23-H), 1.58–1.76 (4 H, m, 18-H, 18-H, 20-H and 23-H), 1.39–1.49 (4 H, m, 22-H, 26-H, 27-H and 27-H), 1.24–1.35 (3 H, m, 26-H, 28-H and 28-H), 0.86–0.89 [12 H, m, 28-C H_3 and SiC(C H_3)₃], 0.11 (3 H, s, SiC H_3), 0.10 (3 H, s, SiC H_3); δ_C (125 MHz, CDCl₃) 158.9, 131.2, 129.4, 113.5, 81.8, 81.1, 75.9, 72.4, 69.7, 59.8, 55.2, 42.8, 38.7, 31.5, 30.8, 27.8, 27.5, 25.8, 22.7, 17.9, 14.0, -4.6, -4.7;HRMS (ES⁺) m/z calc. for $C_{27}H_{48}O_5SiNa$ ([MNa]⁺): 503.3163, found: 503.3147.

Iodide 55

To a stirred solution of alcohol 54 (5.50 g, 11.4 mmol) in benzene (60 mL) were added imidazole (3.10 g, 45.6 mmol), PPh₃ (5.98 g, 22.8 mmol), and I_2 (5.79 g, 22.8 mmol) sequentially at room temperature. After 30 min, the reaction was quenched by the addition of sat. aq. Na₂S₂O₃ (60 mL), diluted with water (40 mL), and extracted with Et₂O (3 \times 50 mL). The combined organic layers were washed with sat. aq. $Na_2S_2O_3$ (1 × 50 mL), brine (1 \times 50 mL), dried (MgSO₄), filtered and concentrated in vacuo. The residue was triturated with 4:1 hexanes-Et₂O, the precipitated Ph₃PO was removed by filtration, and the filtrate was concentrated under reduced pressure. The residue was purified by flash chromatography on silica gel (gradient: 2.5–5% Et₂O in hexanes) to give 55 (6.59 g, 97%) as a colourless oil. $R_f = 0.41$ (silica gel, 9 : 1 hexanes–Et₂O); $[a]_D^{25}$ –15.5° (c 1.29 in CHCl₃); v_{max} /cm⁻¹ (film) 2954, 2856, 1612, 1468, 1301, 1068, 835; $\delta_{\rm H}$ (500 MHz, CDCl₃) 7.30 (2 H, d, J 8.7 Hz, ArH), 6.87 (2 H, d, J 8.7 Hz, Ar*H*), 4.72 (1 H, d, *J* 11.1 Hz, OC*H*₂Ar), 4.54 (1 H, d, *J* 11.1 Hz, OCH_2Ar), 3.84–3.94 (3 H, m, 19-H, 21-H and 24-H), 3.80 (3 H, s, ArOCH₃), 3.29–3.31 (1 H, m, 25-H), 3.20 (2 H, t, J 7.5 Hz, 17-H and 17-H), 2.07–2.10 (1 H, m, 18-H), 1.99–2.01 (1 H, m, 18-H), 1.92–1.95 (1 H, m, 23-H), 1.83 (1 H, dddd, J 12.5, 8.7, 6.9 and 5.9 Hz, 22-H), 1.57–1.69 (3 H, m, 20-H, 20-H and 23-H), 1.41–1.48 (4 H, m, 22-H, 26-H, 27-H and 27-H), 1.24–1.35 (3 H, m, 27-H, 28-H and 28-H), 0.90 [9 H, m, SiC(CH₃)₃], 0.89 (3 H, t, J 7.3 Hz,

28-C H_3), 0.10 (6 H, s, SiC H_3 and SiC H_3); $\delta_{\rm C}$ (125 MHz, CDCl₃) 158.9, 131.4, 129.5, 113.6, 82.1, 81.3, 75.7, 72.6, 70.3, 55.2, 43.2, 42.2, 31.5, 30.9, 27.9, 27.7, 25.9, 22.8, 18.0, 14.1, 2.4, -4.4, -4.5; HRMS (ES⁺) m/z calc. for C₂₇H₄₇IO₄SiNa ([MNa]⁺): 613.2180, found: 613.2175.

cis-Allyltetrahydrofuran 56

From the above procedure for the synthesis of 49, the minor diasteromer, 56 (2.61 g, 21%) was also isolated as a colourless oil. $R_f = 0.34$ (silica gel, 4: 1 hexanes–Et₂O); $[a]_D^{25} - 19.5^{\circ}$ (c 1.11 in CHCl₃); v_{max} /cm⁻¹ (film) 3067, 2941, 2855, 1608, 1451, 1169, 1035, 909; $\delta_{\rm H}$ (500 MHz, C₆D₆) 7.34 (2 H, d, J 8.4 Hz, ArH), 6.81 (2 H, d, J 8.4 Hz, ArH), 5.85–5.91 (1 H, m, 19-H), 5.03–5.09 (2 H, m, 18-H and 18-H), 4.79 (1 H, d, J 11.3 Hz, OCH₂Ar), 4.60 (1 H, d, J 11.3 Hz, OCH₂Ar), 4.07 (1 H, app q, J 6.9 Hz, 21-H), 3.94–3.98 (1 H, m, 24-H), 3.29 (3 H, s, OCH₂Ar) 3.24–3.28 (1 H, m, 25-H), 2.35 (1 H, ddd, J 13.5, 6.9 and 6.4 Hz, 20-H), 2.16 (1 H, ddd, J 13.5, 7.0 and 6.4 Hz, 20-H), 1.23–1.71 (10 H, m, 22-H, 22-H, 23-H, 23-H, 26-H, 26-H, 27-H, 27-H, 28-H and 28-H), 0.89 (3 H, t, J 7.3 Hz, 28-C H_3); δ_C (125 MHz, C_6D_6) 159.5, 135.7, 132.2, 129.6, 116.6, 113.9, 81.9, 81.5, 78.8, 72.7, 54.7, 40.8, 31.8, 31.1, 28.7, 28.4, 23.3, 14.3; HRMS (ES⁺) m/z calc. for $C_{20}H_{30}O_3Na$ ([MNa]⁺): 341.2087, found: 341.2096.

Alcohol 57

To a stirred solution of 48b (150 mg, 0.49 mmol) and allyltrimethylsilane (0.16 mL, 0.98 mmol) in CH₂Cl₂ (2 mL) was added BF₃·OEt₂ $(68 \mu L, 0.54 \text{ mmol})$ at $-78 \,^{\circ}\text{C}$. After stirring for 2 h at $-78 \,^{\circ}\text{C}$, the solution was warmed to 0 °C for 1 h and then quenched by the addition of sat. aq. NaHCO₃ (5 mL) and warmed to room temperature. The mixture was extracted with EtOAc (3 \times 5 mL), and the combined organic layers were washed with sat. aq. NaHCO₃ (1 × 10 mL), brine (1 × 10 mL), dried (MgSO₄), filtered and concentrated in vacuo. The residue was purified by flash chromatography on silica gel (5% EtOAc in hexanes) to give **57** (71 mg, 71%) as a colourless oil. $R_f = 0.27$ (silica gel, 4: 1 hexanes-Et₂O); $[a]_D^{25}$ -8.5° (c 1.36 in CHCl₃); v_{max} /cm⁻¹ (film) 3448, 2931, 1465, 1247, 912; $\delta_{\rm H}$ (600 MHz, C_6D_6) 5.73 (1 H, dddd, J 17.1, 10.2, 7.2 and 6.9 Hz, 19-H), 4.97-5.02 (2 H, m, 18-H and 18-H), 3.68–3.73 (1 H, m, 21-H), 3.56 (1 H, app q, J 6.8 Hz, 24-H), 3.29–3.33 (1 H, m, 25-H), 2.63 (1 H, br s, OH), 2.23 (1 H, ddd, J 13.2, 6.9 and 6.5 Hz, 20-H), 2.07 (1 H, ddd, J 13.2, 7.2 and 6.3 Hz, 20-H), 1.51–1.64 (2 H, m, 22-H and 23-H), 1.36–1.49 (4 H, m, 23-H, 26-H, 26-H and 27-H), 1.24-1.34 (4 H, m, 22-H, 27-H, 28-H and 28-H), 0.88 (3 H, t, J 7.3 Hz, 28-C H_3); δ_C (150 MHz, C_6D_6) 135.9, 117.5, 83.7, 79.4, 74.9, 41.1, 34.7, 31.5, 29.0, 28.4, 23.8, 15.0; HRMS (ES⁺) m/z calc. for $C_{12}H_{22}O_2Na$ ([MNa]⁺): 221.1512, found: 221.1505.

Aldehyde 59

A solution of DMSO (10.7 mL, 151 mmol) in CH_2Cl_2 (10 mL) was added dropwise to a stirred solution of (COCl)₂ (6.59 mL, 75.5 mmol) in CH_2Cl_2 (150 mL) at -78 °C. After 20 min, a solution of alcohol **58** ³⁰ (10.5 g, 41.9 mmol) in CH_2Cl_2 (20 mL) was added over 20 min, and the mixture stirred for 30 min at -78 °C before the addition of Et_3N (42.1 mL, 302 mmol) and warming to room temperature. After 1 h, the reaction mixture was poured

into water (250 mL), the layers were separated, and the aqueous layer was extracted with CH₂Cl₂ (2 × 200 mL). The combined organic layers were dried (MgSO₄), filtered and concentrated in vacuo. The residue was purified by flash chromatography on silica gel (gradient: 10–20% EtOAc in hexanes) to give **59** (10.04 g, 96%) as a colourless oil. $R_f = 0.49$ (silica gel, 3 : 2 hexanes–EtOAc); $[a]_{\rm D}^{25}$ +14.2° (c 1.38 in CH₂Cl₂); $v_{\rm max}$ /cm⁻¹ (film) 2967, 1728, 1613, 1302, 1173, 822; $\delta_{\rm H}$ (600 MHz, CDCl₃) 9.68 (1 H, dd, J 3.4, 1.6 Hz, 7-H), 7.21 (2 H, d, *J* 8.6 Hz, Ar*H*), 6.83 (2 H, d, *J* 8.6 Hz, Ar*H*), 5.74 (1 H, ddd, J 16.9, 10.8 and 7.1 Hz, 11-H), 5.03–5.06 (2 H, m, 12-H and 12-H), 4.48 (1 H, d, J 11.1 Hz, OCH₂Ar), 4.41 (1 H, d, J 11.1 Hz, OCH₂Ar), 3.88–3.91 (1 H, m, 9-H), 3.72 (3 H, s, ArOC H_3), 2.52–2.57 (2 H, m, 8-H and 10-H), 2.40 (1 H, ddd, J 16.6, 3.4 and 1.6 Hz, 8-H), 1.02 (3 H, d, J 6.9 Hz, 10-CH₃); $\delta_{\rm C}$ (150 MHz, CDCl₃) 201.2, 158.9, 139.4, 130.0, 129.0, 115.3, 113.4, 76.6, 71.0, 54.8, 44.8, 40.0, 13.7; HRMS (ES+) m/z calc. for $C_{15}H_{20}O_3Na$ ([MNa]⁺): 271.1305, found: 271.1296.

(7R)-Alcohol 60 and (7S)-alcohol 61

n-BuLi (43.0 mL, 1.6 M in hexanes, 68.2 mmol) was added dropwise to a stirred solution of (trimethylsilyl)acetylene (9.46 mL, 68.3 mmol) in THF (150 mL) at -78 °C. After 30 min, a solution of aldehyde 59 (11.3 g, 45.5 mmol) in THF (20 mL) was added dropwise. The mixture was stirred at -78 °C for 1 h, then at 0 °C for a further 1 h, before being quenched by the addition of sat. aq. NH₄Cl (250 mL). The mixture was extracted with Et₂O (3 \times 150 mL), and the combined organic layers were washed with brine $(1 \times 250 \text{ mL})$, dried (MgSO₄), filtered, and concentrated in vacuo. The residue was purified by flash chromatography on silica gel (gradient: 10–20% EtOAc in hexanes) to give 15.265 g of a 3:1 mixture of diastereomeric products 60 and 61 (44.0 mmol, 98%) as a colourless oil. This mixture of diastereomers could be separated via careful flash chromatography on silica gel (gradient: 4-50% Et₂O in hexanes).

Data for compound 60. $R_{\rm f} = 0.26$ (silica gel, 4 : 1 hexanes-Et₂O); $[a]_D^{25}$ +63.7° (c 1.95 in CH₂Cl₂); v_{max} /cm⁻¹ (film) 3420, 3074, 2962, 2171, 1614, 1463, 1250, 843; $\delta_{\rm H}$ (600 MHz, CDCl₃) 7.30 (2 H, d, J 8.6 Hz, ArH), 6.88 (2 H, d, J 8.6 Hz, ArH), 5.78 (1 H, ddd, J 17.2, 10.6 and 6.8 Hz, 11-H), 5.07–5.11 (2 H, m, 12-H and 12-H), 4.60 (1 H, d, J 10.5 Hz, OCH₂Ar), 4.54 (1 H, dd, J 6.6, 2.5 Hz, 7-H), 4.47 (1 H, d, J 10.5 Hz, OC H_2 Ar), 3.93-3.96 (1 H, m, 9-H), 3.80 (3 H, s, ArOCH₃), 3.02 (1 H, br s, OH), 2.65–2.70 (1 H, m, 10-H), 1.85–1.90 (1 H, m, 8-H), 1.71–1.75 (1 H, m, 8-H), 1.05 (3 H, d, J 6.9 Hz, 10-C H_3), 0.19 [9 H, s, Si(C H_3)₃]; δ_C (150 MHz, CDCl₃) 159.2, 140.1, 130.1, 129.6, 115.0, 113.8, 106.9, 89.2, 80.0, 71.6, 60.9, 55.2, 39.2, 36.6, 13.2, -0.1; HRMS (ES⁺) m/z calc. for $C_{20}H_{30}O_3SiNa$ ([MNa]⁺): 369.1856, found: 369.1850.

Data for compound 61. $R_{\rm f} = 0.20$ (silica gel, 4 : 1 hexanes– Et₂O); $[a]_D^{25}$ +61.7° (c 1.15 in CH₂Cl₂); v_{max} /cm⁻¹ (film) 3416, 2959, 2171, 1613, 1463, 1244, 844; $\delta_{\rm H}$ (600 MHz, CDCl₃) 7.25 (2 H, d, J 8.5 Hz, ArH), 6.85 (2 H, d, J 8.5 Hz, ArH), 5.75 (1 H, ddd, J 16.9, 10.9 and 6.8 Hz, 11-H), 5.06–5.09 (2 H, m, 12-H and 12-H), 4.57 (1 H, d, J 10.9 Hz, OCH₂Ar), 4.51 (1 H, dd, J 7.5, 6.3 Hz, 7-H), 4.38 (1 H, d, J 10.9 Hz, OCH₂Ar), 3.78 (3 H, s, ArOCH₃), 3.64 (1 H, ddd, J 10.1, 3.9 and 3.1 Hz, 9-H), 3.05 (1 H, br s, OH), 2.62–2.68 (1 H, m, 10-H), 1.96 (1 H, ddd, J 14.0, 10.1 and 7.5 Hz, 8-H), 1.73 (1 H, ddd, J 14.0, 6.3 and 3.1 Hz, 8-H), 1.03 (3 H, d, J 6.9 Hz, 10-C H_3), 0.16 [9 H, s, Si(C H_3)₃]; δ_C (150 MHz, CDCl₃) 159.2, 139.9, 129.4, 130.0, 115.1, 113.8, 106.4, 89.1, 79.7, 71.2, 61.9, 55.1, 39.2, 37.9, 13.1, -0.2; HRMS (ES⁺) m/z calc. for C₂₀H₃₀O₃SiNa ([MNa]⁺): 369.1856, found: 369.1852.

t-Butyldimethylsilyl ether 62

Imidazole (6.12 g, 89.9 mmol), TBSCl (6.587 g, 43.7 mmol) and a catalytic amount of 4-DMAP were added sequentially to a stirred solution of alcohol 61 (8.91 g, 25.7 mmol) in CH₂Cl₂ (80 mL) at room temperature. After 2 h, the reaction was quenched by the addition of water (100 mL), the layers were separated, and the aqueous layer was extracted with CH_2Cl_2 (2 × 75 mL). The combined organic layers were washed with brine (1 × 100 mL), dried (MgSO₄), filtered and concentrated in vacuo. The residue was purified by flash chromatography on silica gel (gradient: 1-4% Et₂O in hexanes) to give **62** (10.945 g, 93%) as a colourless oil. $R_f = 0.64$ (silica gel, 3 : 2 hexanes–Et₂O); $[a]_D^{25} + 2.0^\circ$ (c 2.46) in CH_2Cl_2); v_{max}/cm^{-1} (film) 2945, 2176, 1611, 1466, 1248, 843; $\delta_{\rm H}$ (600 MHz, CDCl₃) 7.29 (2 H, d, J 8.2 Hz, ArH), 6.89 (2 H, d, J 8.2 Hz, ArH), 5.82 (1 H, ddd, J 16.9, 10.9 and 7.0 Hz, 11-H), 5.05–5.11 (2 H, m, 12-H and 12-H), 4.51–4.54 (2 H, m, 7-H and OCH_2Ar), 4.44 (1 H, d, J 11.0 Hz, OCH_2Ar), 3.81 (3 H, s, ArOCH₃), 3.61 (1 H, app dd, J 8.8, 3.8 Hz, 9-H), 2.52–2.58 (1 H, m, 10-H), 1.89 (1 H, ddd, J 13.5, 8.8 and 5.8 Hz, 8-H), 1.77 (1 H, ddd, J 13.5, 9.0 and 3.8 Hz, 8-H), 1.06 (3 H, d, J 6.9 Hz, 10-C H_3), 0.92 [9 H, s, SiC(C H_3)₃], 0.18 [9 H, s, Si(C H_3)₃], 0.15 $(3 \text{ H}, \text{ s}, \text{SiC}H_3), 0.12 (3 \text{ H}, \text{ s}, \text{SiC}H_3); \delta_{\text{C}} (150 \text{ MHz}, \text{CDCl}_3) 159.1,$ 140.4, 131.0, 129.3, 114.8, 113.7, 107.5, 89.3, 79.6, 71.8, 61.6, 55.2, 40.3, 39.9, 25.8, 18.2, 14.6, -0.2, -4.5, -4.9; HRMS (ES⁺) m/zcalc. for $C_{25}H_{42}O_3Si_2Na$ ([MNa]⁺): 485.2514; found: 485.2511.

Aldehyde 63

A solution of alkene **62** (10.0 g, 21.7 mmol) in CH₂Cl₂ (200 mL) was cooled to -78 °C and a stream of ozone (ca. 10% in oxygen) was bubbled through the mixture until TLC analysis confirmed the complete consumption of starting material, then oxygen was bubbled through the solution for an additional 20 min to remove excess ozone. PPh₃ (8.54 g, 32.6 mmol) was added to the solution, which was then stirred and warmed to room temperature over 1 h. The mixture was then concentrated under reduced pressure, and triturated with 4: 1 hexanes–Et₂O. The precipitated Ph₃PO was then removed by filtration, and the filtrate was concentrated in vacuo. The residue was purified by flash chromatography on silica gel (gradient: 2–20% Et₂O in hexanes) to give **63** (9.88 g, 98%) as a colourless oil. $R_f = 0.26$ (silica gel, 21 : 4 hexanes–Et₂O); $[a]_D^{25}$ -10.0° (c 1.06 in CH₂Cl₂); v_{max} /cm⁻¹ (film) 2955, 2171, 1724, 1613, 1462, 1246, 839; $\delta_{\rm H}$ (600 MHz, CDCl₃) 9.76 (1 H, s, 11-H), 7.28 (2 H, d, J 8.5 Hz, ArH), 6.91 (2 H, d, J 8.5 Hz, ArH), 4.59–4.61 (1 H, m, 7-H), 4.55 (1 H, d, J 11.0 Hz, OCH₂Ar), 4.49 (1 H, d, J 11.0 Hz, OCH₂Ar), 3.98–4.01 (1 H, m, 9-H), 3.83 (3 H, s, ArOCH₃), 2.75–2.78 (1 H, m, 10-H), 2.05–2.10 (1 H, m, 8-H), 1.85–1.89 (1 H, m, 8-H), 1.15 (3 H, d, J 7.0 Hz, 10-CH₃), 0.93 [9 H, s, $SiC(CH_3)_3$], 0.21 [9 H, s, $Si(CH_3)_3$], 0.18 (3 H, s, $SiCH_3$), 0.15 (3 H, s, $SiCH_3$); δ_C (150 MHz, $CDCl_3$) 203.9, 159.2, 130.1, 129.4, 113.7, 106.8, 89.9, 76.6, 71.8, 60.9, 55.2, 49.8, 40.6, 25.7, 18.1, 10.0, -0.3, -4.5, -5.0; HRMS (ES+) m/z calc. for $C_{25}H_{42}O_3Si_2Na$ ([MNa]⁺): 485.2514, found: 485.2511.

α,β-Unsaturated ester 64

Aldehyde 63 (9.51 g, 20.5 mmol) and (carbethoxyethylidene)triphenylphosphorane (11.9 g, 32.8 mmol) were combined in benzene (100 mL) and heated to 70 °C overnight. The solution was then cooled to room temperature and concentrated under reduced pressure. The residue was triturated with 4:1 hexanes-Et₂O, and filtered to remove the solid Ph₃PO. The filtrate was the concentrated in vacuo, and the residue was purified by flash chromatography on silica gel (gradient: 4–15% Et₂O in hexanes) to give **64** (11.02 g, 98%) as a colourless oil. $R_f = 0.32$ (silica gel, 21 : 4 hexanes–Et₂O); $[a]_D^{25}$ +2.9° (c 1.48 in CH₂Cl₂); v_{max} /cm⁻¹ (film) 2959, 2169, 1710, 1614, 1462, 1249, 839; $\delta_{\rm H}$ (600 MHz, CDCl₃) 7.25 (2 H, d, J 8.3 Hz, ArH), 6.86 (2 H, d, J 8.3 Hz, ArH), 6.67 (1 H, d, J 8.7 Hz, 11-H), 4.44-4.50 (3 H, m, 7-H, OCH₂Ar and OCH_2Ar), 4.16–4.20 (2 H, m, $CO_2CH_2CH_3$), 3.79 (3 H, s, $ArOCH_3$), 3.56–3.59 (1 H, m, 9-H), 2.79–2.82 (1 H, m, 10-H), 1.91 (1 H, ddd, J 13.5, 8.5 and 5.8 Hz, 8-H), 1.83 (3 H, s, 12-CH₃), 1.71 (1 H, ddd, J 13.5, 8.7 and 3.9 Hz, 8-H), 1.29 (3 H, t, J 7.1 Hz, $CO_2CH_2CH_3$), 1.04 (3 H, d, J 6.8 Hz, 10-C H_3), 0.89 [9 H, s, $SiC(CH_3)_3$], 0.14 [9 H, s, $Si(CH_3)_3$], 0.12 (3 H, s, $SiCH_3$), 0.09 $(3 \text{ H, s, SiC}H_3); \delta_C (150 \text{ MHz, CDCl}_3) 169.0, 160.0, 144.5, 131.6,$ 130.3, 128.9, 114.6, 108.1, 90.5, 79.9, 73.0, 62.3, 61.4, 56.1, 41.6, $37.6, 26.7, 19.1, 16.2, 15.2, 13.6, 0.7, -3.6, -4.0; HRMS (ES^+) m/z$ calc. for $C_{30}H_{50}O_5Si_2Na$ ([MNa]⁺): 569.3089, found: 569.3081.

Allylic alcohol 65

DIBAL-H (14.8 mL, 1.0 M in toluene, 14.8 mmol) was added dropwise to a stirred solution of ester 64 (2.71 g, 4.93 mmol) in THF (30 mL) at 0 °C. After 30 min, the reaction was quenched by the addition of EtOAc (10 mL) and then MeOH (10 mL), and was then warmed to room temperature. The mixture was partitioned between EtOAc (50 mL) and sat. aq. Rochelle's salt (50 mL) and stirred vigorously for 3 h at room temperature. The layers were then separated, and the aqueous layer was extracted with EtOAc (3 × 30 mL). The combined organic layers were washed with brine (1 × 50 mL), dried (MgSO₄), filtered and concentrated in vacuo. The residue was purified by flash chromatography on silica gel (gradient: 25–40% Et₂O in hexanes) to give **65** (2.469 g, 99%) as a colourless oil. $R_f = 0.51$ (silica gel, 1 : 1 hexanes–Et₂O); $[a]_D^{25}$ -19.5° (c 1.66 in CH₂Cl₂); v_{max} /cm⁻¹ (film) 3432, 2954, 2166, 1614, 1465, 1247, 912, 843; $\delta_{\rm H}$ (600 MHz, CDCl₃) 7.27 (2 H, d, J 8.4 Hz, ArH), 6.87 (2 H, d, J 8.4 Hz, ArH), 5.33 (1 H, d, J 8.7 Hz, 11-H), 4.48-4.52 (2 H, m, 7-H and OC H_2 Ar), 4.45 (1 H, d, J 11.1 Hz, OCH_2Ar), 3.98 (2 H, s, 13-H and 13-H), 3.80 (3 H, s, $ArOCH_3$), 3.54–3.56 (1 H, m, 9-H), 2.70–2.76 (1 H, m, 10-H), 1.89 (1 H, ddd, J 13.4, 8.8 and 6.1 Hz, 8-H), 1.69–1.73 (1 H, m, 8-H), 1.68 (1 H, br s, OH), 1.67 (3 H, s, 12-CH₃), 1.00 (3 H, d, J 6.6 Hz, 10-CH₃), 0.90 [9 H, s, SiC(C H_3)₃], 0.16 [9 H, s, Si(C H_3)₃], 0.14 (3 H, s, SiC H_3), 0.10 (3 H, s, SiC H_3); δ_C (150 MHz, CDCl₃) 159.0, 135.2, 131.0, 129.4, 128.0, 113.7, 105.7, 89.4, 79.6, 71.9, 68.8, 61.6, 55.2, 40.3, 35.0, 25.8, 18.2, 16.0, 13.9, -0.2, -4.5, -4.9; HRMS (ES⁺) m/zcalc. for $C_{28}H_{48}O_4Si_2Na$ ([MNa]⁺): 527.2983, found: 527.2980.

Allylic bromide 67

MsCl (0.92 mL, 11.9 mmol) was added dropwise to a stirred solution of alcohol **65** (2.00 g, 3.98 mmol) and Et₃N (2.22 mL, 15.9 mmol) in THF (70 mL) at 0 °C. After 1 h the mixture was

warmed to room temperature and LiBr (3.45 g, 39.8 mmol) was added in one portion. After a further 45 min at room temperature the reaction was quenched with water (150 mL) and extracted with Et₂O (3 \times 60 mL). The combined organic layers were dried (MgSO₄), filtered and concentrated in vacuo. The residue was purified by flash chromatography on silica gel (2-4% Et₂O in hexanes) to give **67** (2.004 g, 89%) as a colourless oil. $R_{\rm f} = 0.39$ (silica gel, 23 : 2 hexanes–Et₂O); $[a]_D^{25}$ +13.3° (c 1.34 in CH₂Cl₂); $\delta_{\rm H}$ (600 MHz, C₆D₆) 7.26 (2 H, d, J 8.6 Hz, ArH), 6.80 (2 H, d, J 8.6 Hz, ArH), 5.37 (1 H, d, J 9.4 Hz, 11-H), 4.75 (1 H, dd, J 8.4, 6.0 Hz, 7-H), 4.46 (2 H, s, OCH_2Ar and OCH_2Ar), 3.62–3.66 (1 H, m, 9-H), 3.57 (1 H, d, J 9.5 Hz, 13-H), 3.56 (1 H, d, J 9.5 Hz, 13-H), 3.31 (3 H, s, ArOC H_3), 2.54–2.60 (1 H, m, 10-H), 2.11 (1 H, ddd, J 13.5, 8.4 and 6.0 Hz, 8-H), 1.88 (1 H, ddd, J 13.5, 8.4 and 4.2 Hz, 8-H), 1.61 (3 H, s, 12-CH₃), 0.98 (3 H, d, J 6.9 Hz, 10- CH_3), 0.92 [9 H, s, $SiC(CH_3)_3$], 0.24 (3 H, s, $SiCH_3$), 0.16 [9 H, s, Si(CH₃)₃], 0.15 (3 H, s, SiCH₃); $\delta_{\rm C}$ (150 MHz, C₆D₆) 159.7, 133.2, 132.7, 131.4, 129.7, 114.0, 108.4, 89.5, 79.5, 72.4, 62.0, 54.7, $41.2, 41.2, 36.3, 26.0, 18.4, 15.9, 14.9, -0.1, -4.1, -4.7; v_{max}/cm^{-1}$ (film) 2951, 2166, 1615, 1465, 1250, 841; HRMS (ES+) m/z calc. for C₂₈H₄₇⁷⁹BrO₃Si₂Na ([MNa]⁺): 589.2139, found: 589.2131.

Ketone 68

IBX (1.697 g, 6.06 mmol) was dissolved in DMSO (12 mL) at room temperature, then a solution of alcohol 61 (1.40 g, 4.04 mmol) in DMSO (4 mL) was added slowly and the mixture was stirred for 2 h. The reaction mixture was then poured into a vigorously stirred mixture of water (75 mL) and Et₂O (75 mL), and then filtered. The filtrate was diluted with Et₂O (300 mL), and the layers were separated. The organic layer was then washed with water (1 \times 75 mL), brine (2 \times 75 mL), dried (MgSO₄), filtered and concentrated in vacuo. The residue was purified by flash chromatography on silica gel (4% Et₂O in hexanes) to give **68** (1.083 g, 78%) as a colourless oil. $R_f = 0.22$ (silica gel, 22 : 3 hexanes–Et₂O); $[a]_{D}^{25} -1.5^{\circ}$ (c 1.30 in CH₂Cl₂); $v_{\text{max}}/\text{cm}^{-1}$ (film) 3076, 2960, 2151, 2093, 1681, 1421, 1122, 847; $\delta_{\rm H}$ (600 MHz, CDCl₃) 7.23 (2 H, d, J 8.5 Hz, ArH), 6.84 (2 H, d, J 8.5 Hz, ArH), 5.78 (1 H, ddd, J 16.7, 11.0 and 7.1 Hz, 11-H), 5.05-5.08 (2 H, m, 12-H and 12-H), 4.48 (2 H, s, OCH₂Ar), 4.01–4.04 (1 H, m, 9-H), 3.74 (3 H, s, ArOCH₃), 2.78 (1 H, dd, J 16.3, 8.5 Hz, 8-H), 2.60 (1 H, dd, J 16.3, 4.0 Hz, 8-H), 2.50–2.56 (1 H, m, 10-H), 1.04 (3 H, d, J 6.9 Hz, 10-CH₃), 0.23 [9 H, s, Si(CH₃)₃]; $\delta_{\rm C}$ (150 MHz, CDCl₃) 185.5, 158.9, 139.4, 130.1, 129.0, 115.3, 113.4, 102.1, 97.5, 77.8, 71.5, 54.8, 46.9, 40.2, 14.1, -1.1; HRMS (ES+) m/z calc. for $C_{20}H_{28}O_3SiNa$ ([MNa]⁺): 367.1700, found: 367.1701.

Noyori reduction of 68 to 60

To a stirred solution of ketone **68** (1.35 g, 3.92 mmol) in 2-propanol (4 mL) was added ruthenium complex **69** ³¹ (24 mg, 0.04 mmol) in one portion at room temperature. After 16 h the mixture was concentrated *in vacuo*, and the residue was purified by flash chromatography on silica gel (gradient: 10–20% EtOAc in hexanes) to give **60** (1.315 g, 97%) as a colourless oil.

Oxazolidinone 71

To a stirred solution of oxazolidinone **70**³³ (4.665 g, 20.0 mmol) in CH₂Cl₂ (60 mL) were added *n*-Bu₂BOTf (24.0 mL, 1.0 M in

CH₂Cl₂, 24.0 mmol) and then *i*-Pr₂NEt (4.8 mL, 27.6 mmol) dropwise at $0 \,^{\circ}$ C. After $10 \,^{\circ}$ C min the mixture was cooled to $-78 \,^{\circ}$ C, and freshly distilled acrolein (7.0 mL, 104.8 mmol) was added dropwise over 5 min. The mixture was stirred at -78 °C for 45 min, then allowed to warm to 0 $^{\circ}\text{C}$ over 30 min, before a pH 7 aqueous buffer solution (30 mL) and MeOH (100 mL) were added. A 2:1 MeOH-35% aq. H₂O₂ mixture (100 mL) was then added dropwise over 20 min, and stirring continued at 0 °C for a further 20 min before the mixture was concentrated in vacuo to remove most of the CH₂Cl₂ and MeOH. The residue was partitioned between Et₂O (200 mL) and water (200 mL). The layers were separated, and the aqueous layer was extracted with Et₂O (2 \times 200 mL). The combined organic layers were washed with sat. aq. NaHCO₃ (1 \times 150 mL), brine (1 \times 150 mL), dried (MgSO₄), filtered and concentrated in vacuo. The residue was purified by flash chromatography on silica gel (gradient: 25-33% EtOAc in hexanes) to give **71** (5.392 g, 93%) as white crystals. $R_f = 0.31$ (1 : 1 hexanes–EtOAc); mp 73–74 °C; $[a]_{\rm D}^{25}$ –56.9° (c 1.06 in CHCl₃); $v_{\text{max}}/\text{cm}^{-1}$ (film) 3506, 2984, 2931, 1790, 1689, 1603, 1454, 1390, 1204, 1114; $\delta_{\rm H}$ (600 MHz, CDCl₃) 7.32–7.34 (2 H, m, ArH), 7.26– 7.29 (1 H, m, ArH), 7.20 (2 H, d, J 7.7 Hz, ArH), 5.85 (1 H, ddd, J 17.2, 10.5 and 5.5 Hz, H-4), 5.35 (1 H, d, J 17.2 Hz, H-5), 5.22 (1 H, d, J 10.5 Hz, H-5), 4.29-4.72 (1 H, m, OCH₂CHN), 4.50-4.51(1 H, m, H-3), 4.18-4.24 (2 H, m, OC H_2 CHN and OC H_2 CHN), 3.36-3.90 (1 H, m, H-2), 3.25 (1 H, dd, J 13.4, 3.0 Hz, CH_2Ph), 2.79 (1 H, dd, J 13.4, 9.5 Hz, CH₂Ph), 1.24 (3 H, d, J 7.0 Hz, 2-C H_3); δ_C (150 MHz, CDCl₃) 176.5, 153.1, 137.2, 134.9, 129.4, 128.9, 127.4, 116.3, 72.6, 66.2, 55.1, 42.4, 37.7, 10.9; HRMS (ES+) m/z calc. for $C_{16}H_{19}NO_4Na$ ([MNa]⁺): 312.1206, found 312.1206.

Methyl ester 72

To a stirred solution of oxazolidinone 71 (500 mg, 1.73 mmol) in MeOH (17 mL) was added NaOMe (130 mg, 2.41 mmol) in one portion at 0 °C. After 40 min at 0 °C, the reaction was quenched by the addition of sat. aq. NH₄Cl (20 mL), and mixture was concentrated under reduced pressure to remove most of the MeOH. The residue was paritioned between EtOAc (30 mL) and brine (20 mL). The layers were separated, and the aqueous layer was extracted with EtOAc (3 \times 20 mL). The combined organic layers were dried (MgSO₄), filtered and concentrated in vacuo. The residue was purified by flash chromatography on silica gel (20% EtOAc in hexanes) to give 72 (126 mg, 51%) as a colourless oil. $R_{\rm f} = 0.54 \, (1:1 \text{ hexanes-EtOAc}); [a]_{\rm D}^{25} - 19.4^{\circ} \, (c \, 1.54 \text{ in CHCl}_3);$ $v_{\rm max}/{\rm cm}^{-1}$ (film) 3489, 2996, 2953, 1733, 1648, 1459, 1436, 1151; $\delta_{\rm H}$ (500 MHz, CDCl₃) 5.77 (1 H, ddd, J 17.2, 10.5 and 5.7 Hz, 4-H), 5.24 (1 H, app dt, J 17.2, 1.5 Hz, 5-H), 5.12 (1 H, app dt, J 10.5, 1.5 Hz, 5-H), 4.31–4.33 (1 H, m, 3-H), 3.63 (3 H, s, CO_2CH_3), 2.94 (1 H, br s, OH), 2.54–2.60 (1 H, m, 2-H), 1.11 (3 H, d, J 7.2 Hz, 2-C H_3); δ_C (125 MHz, CDCl₃) 175.5, 137.4, 116.0, 73.0, 51.6, 44.6, 11.2; HRMS (ES⁺) m/z calc. for $C_7H_{12}O_3Na$ ([MNa]⁺): 167.0679, found 167.0685.

t-Butyldimethylsilyl ether 73

To a stirred solution of alcohol **72** (2.40 g, 16.7 mmol) in CH_2Cl_2 (80 mL) were added imidazole (4.53 g, 66.6 mmol), TBSCl (5.02 g, 33.3 mmol) and a catalytic amount of 4-DMAP sequentially at room temperature. After 16 h the reaction was quenched with

water (150 mL), and extracted with Et₂O (3 × 60 mL). The combined organic layers were washed with brine (1 × 100 mL), dried (MgSO₄), filtered and concentrated *in vacuo*. The residue was purified by flash chromatography on silica gel (gradient: 2–4% Et₂O in hexanes) to give 73 (4.06 g, 95%) as a colourless oil. $R_{\rm f} = 0.39$ (silica gel, 10 : 1 hexanes–Et₂O); $[a]_{\rm D}^{25} - 2.7^{\circ}$ (*c* 1.17 in CH₂Cl₂); $v_{\rm max}/{\rm cm}^{-1}$ (film) 2940, 2862, 1739, 1463, 1252, 1080, 770; $\delta_{\rm H}$ (600 MHz, C_6D_6) 5.68–5.74 (1 H, m, H-4), 5.10 (1 H, dd, *J* 17.3, 1.2 Hz, H-5), 4.94 (1 H, dd, *J* 10.4, 0.8 Hz, H-5), 4.42–4.44 (1 H, m, H-3), 3.38 (3 H, s, CO₂CH₃), 2.38–2.42 (1 H, m, H-2), 1.13 (3 H, d, *J* 7.0 Hz, 2-CH₃), 0.90 [9 H, s, SiC(CH₃)₃], -0.01 (3 H, s, SiCH₃), -0.02 (3 H, s, SiCH₃); $\delta_{\rm C}$ (150 MHz, C_6D_6) 173.8, 139.9, 115.3, 75.2, 51.0, 46.6, 26.0, 18.3, 11.3, -4.1, -5.0; HRMS (ES⁺) m/z calc. for $C_{13}H_{26}O_3$ SiNa ([MNa]⁺): 281.1543, found: 281.1540.

t-Butyldimethylsilyl ether 74

To a stirred solution of alcohol 71 (1.10 g, 3.8 mmol) in CH₂Cl₂ (20 mL) were added imidazole (1.55 g, 22.8 mmol), 4-DMAP (25 mg, 0.2 mmol) and TBSCl (1.72 g, 11.4 mmol) sequentially at room temperature. After 16 h the reaction was quenched by the addition of sat. aq. NH₄Cl (30 mL) and extracted with Et₂O $(3 \times 30 \text{ mL})$. The combined organic layers were washed with sat. aq. NaHCO₃ (1 × 30 mL), brine (1 × 30 mL), dried (MgSO₄), filtered and concentrated in vacuo. The residue was purified by flash chromatography on silica gel (15% EtOAc in hexanes) to give **74** (1.44 g, 94%) as a white solid. $R_f = 0.48$ (4 : 1 hexanes–EtOAc); mp 54 °C; $[a]_D^{25}$ -67.8° (c 1.76 in CHCl₃); $v_{\text{max}}/\text{cm}^{-1}$ (film) 2957, 2856, 1783, 1700, 1383, 1209, 1099, 836; $\delta_{\rm H}$ (600 MHz, CDCl₃) 7.32–7.34 (2 H, m, Ar*H*), 7.26–7.28 (1 H, m, Ar*H*), 7.22 (2 H, d, *J* 7.1 Hz, ArH), 5.85 (1 H, ddd, J 17.2, 10.4 and 6.4 Hz, 4-H), 5.20 (1 H, d, J 17.2 Hz, 5-H), 5.11 (1 H, d, J 10.4 Hz, 5-H), 4.58–4.62 (1 H, m, OCH₂CHN), 4.33 (1 H, app t, J 6.4 Hz, 3-H), 4.12–4.17 (2 H, m, OCH₂CHN and OCH₂CHN), 3.98 (1 H, dq, J 6.4 Hz, 2-H), 3.28 (1 H, dd, J 13.4, 3.2 Hz, CH₂Ph), 2.77 (1 H, dd, J 13.4, 9.7 Hz, CH₂Ph), 1.21 (3 H, d, J 6.4 Hz, 2-CH₃), 0.89 [9 H, s, $Si(CH_3)_3$, 0.02 (3 H, s, $SiCH_3$), 0.01 (3 H, s, $SiCH_3$); δ_C (150 MHz, CDCl₃) 174.6, 153.1, 139.1, 135.3, 129.4, 128.8, 127.2, 115.6, 75.1, 65.9, 55.6, 44.0, 37.7, 25.7, 18.1, 12.4, -4.5, -5.2; HRMS (ES⁺) m/z calc. for $C_{22}H_{33}NO_4SiNa$ ([MNa]⁺): 426.2071, found 426.2071.

Carboxylic acid 75

To a stirred solution of oxazolidinone **74** (234 mg, 0.58 mmol) in 4 : 1 THF–water (4 mL) were added 35% aq. H_2O_2 (0.52 mL, 4.64 mmol) and a solution of LiOH·H₂O (97 mg, 2.32 mmol) in water (0.4 mL) sequentially at 0 °C. After 5 h, sat. aq. Na₂SO₃ (2 mL) was added, and stirring continued at 0 °C for a further 30 min. The mixture was then adjusted to pH 14 with 0.1 M aq. NaOH, and washed with Et_2O (1 × 20 mL). The aqueous layer was then adjusted to pH 3 using 0.1 M aq. KHSO₄, and extracted with EtOAc (3 × 30 mL). The combined organic layers were washed with brine (1 × 30 mL), dried (MgSO₄), filtered and concentrated *in vacuo*. The residue was purified by flash chromatography on silica gel (40% Et_2O in CH_2Cl_2) to give **75** (130 mg, 92%) as a colourless oil. $R_f = 0.61$ (1 : 1 CH_2Cl_2 – Et_2O); $[a]_D^{25}$ –25.6° (*c* 1.28 in $CHCl_3$); v_{max}/cm^{-1} (film) 3107, 2956, 2930, 1710, 1253, 1095, 837, 776; δ_H (500 MHz, C_6D_6) 5.68 (1 H, ddd, *J* 17.1, 10.4 and

6.2 Hz, H-4), 5.13 (1 H, d, J 17.1 Hz, H-5), 4.95 (1 H, d, J 10.4 Hz, H-5), 4.48–4.52 (1 H, m, H-3), 2.41 (1 H, qd, J 7.0, 4.8 Hz, 2-H), 1.15 (3 H, d, J 7.0 Hz, 2-CH₃), 0.96 [9 H, s, Si(CH₃)₃], 0.08 (3 H, s, SiCH₃), 0.02 (3 H, s, SiCH₃); δ _C (125 MHz, C₆D₆) 181.1, 139.3, 115.8, 74.9, 46.7, 26.0, 18.3, 10.9, -4.1, -5.0; HRMS (ES⁺) m/z calc. for C₁₂H₂₄O₃SiNa ([MNa]⁺): 267.1387, found 267.1389.

Alcohol 76

To a stirred solution of oxazolidinone 74 (4.31 g, 10.7 mmol) in THF (50 mL) and MeOH (1.1 mL) was added LiBH₄ (16.0 mL, 2.0 M in THF, 32.0 mmol) dropwise at 0 °C. The mixture was allowed to warm to room temperature over 16 h, then recooled to 0 °C before being quenched by the cautious addition of 1 M aq. NaOH. After a further 10 min of stirring, the mixture was diluted with brine (50 mL) and extracted with EtOAc (3 \times 40 mL). The combined organic layers were washed with brine (1 × 30 mL), dried (MgSO₄), filtered and concentrated in vacuo. The residue was purified by flash chromatography on silica gel (10% EtOAc in hexanes) to give **76** (1.73 g, 70%) as a colourless oil. $R_{\rm f} = 0.53$ (4 : 1 hexanes–EtOAc); $[a]_D^{25}$ –12.5° (c 2.02 in CHCl₃); v_{max} /cm⁻¹ (film) 3356, 2956, 2929, 1472, 1253, 1028, 837, 775; $\delta_{\rm H}$ (500 MHz, C₆D₆) 5.75 (1 H, ddd, J 17.1, 10.4 and 6.2 Hz, H-4), 5.14 (1 H, d, J 17.1 Hz, H-5), 4.99 (1 H, d, J 10.4 Hz, H-5), 4.18–4.23 (1 H, m, H-3), 3.54–3.58 (1 H, m, H-1), 3.35–3.39 (1 H, m, H-1), 2.11 (1 H, br s, OH), 1.71–1.71 (1 H, m, 2-H), 0.96 [9 H, s, $Si(CH_3)_3$], 0.80 (3 H, d, J 7.0 Hz, 2-C H_3), 0.05 (3 H, s, SiC H_3), 0.04 (3 H, s, $SiCH_3$); δ_C (125 MHz, C_6D_6) 139.7, 115.0, 75.7, 65.1, 41.9, 26.0, 18.4, 11.6, -4.2, -5.0; HRMS (ES⁺) m/z calc. for $C_{12}H_{26}O_2SiNa$ ([MNa]+): 253.1594, found 253.1594.

Pivalate 77

To a stirred solution of alcohol 76 (365 mg, 1.58 mmol) in CH₂Cl₂ (10 mL) were added pyridine (0.39 mL, 4.75 mmol), 4-DMAP (10 mg, 0.08 mmol) and freshly distilled PivCl (0.39 mL, 3.16 mmol) sequentially at room temperature. After 16 h, the reaction was quenched by the addition of sat. aq. NaHCO₃ (30 mL), and extracted with Et₂O (3 \times 30 mL). The combined organic layers were washed with sat. aq. NaHCO₃ (1 \times 20 mL), brine (1 \times 20 mL), dried (MgSO₄), filtered and concentrated in vacuo. The residue was purified by flash chromatography on silica gel (10% EtOAc in hexanes) to give 77 (444 mg, 90%) as a colourless oil. $R_{\rm f} = 0.71 \ (4:1 \text{ hexanes-EtOAc}); [a]_{\rm D}^{25} - 5.4^{\circ} \ (c \ 1.27 \text{ in CHCl}_3);$ $v_{\text{max}}/\text{cm}^{-1}$ (film) 2958, 2854, 1732, 1474, 1283, 1153, 1032, 836, 776; $\delta_{\rm H}$ (500 MHz, C_6D_6) 5.67 (1 H, ddd, J 17.2, 10.4 and 6.3 Hz, H-4), 5.10 (1 H, d, J 17.2 Hz, H-5), 4.95 (1 H, d, J 10.4 Hz, H-5), 4.11–4.13 (2 H, m, H-3 and H-1), 4.02 (1 H, dd, J 10.8, 6.2 Hz, H-1), 1.81–1.86 (1 H, m, 2-H), 1.18 [9 H, s, O₂CC(CH₃)₃], 0.96 [9 H, s, $Si(CH_3)_3$, 0.89 (3 H, d, J 6.9 Hz, 2-C H_3), 0.05 (3 H, s, $SiCH_3$), 0.04 (3 H, s, SiC H_3); δ_C (125 MHz, C_6D_6) 177.4, 140.2, 114.9, 74.3, 66.3, 39.6, 38.8, 27.4, 26.0, 18.4, 11.2, -4.0, -4.9; HRMS (ES⁺) m/z calc. for $C_{17}H_{34}O_3SiNa$ ([MNa]⁺): 337.2169, found 337.2171.

Alcohol 78

To a stirred solution of pivalate 77 (90 mg, 0.286 mmol) in THF (6 mL) was added TBAF (0.6 mL, 1.0 M in THF, 0.6 mmol) in one portion at room temperature. After 3.5 h, silica gel (*ca.* 1 g)

was added, and the mixture was concentrated. The solid residue was loaded on to the top of a flash chromatography column, and the product eluted using a gradient of 20–25% Et₂O in hexanes, to give **78** (51 mg, 89%) as a colourless oil. $R_{\rm f}=0.41$ (1 : 1 hexanes–EtOAc); $[a]_{\rm D}^{25}$ –17.5° (c 2.35 in CH₂Cl₂); $\nu_{\rm max}/{\rm cm}^{-1}$ (film) 3500, 2960, 2878, 1730, 1644, 1481, 1399, 1287, 1152, 990, 923; $\delta_{\rm H}$ (600 MHz, C₆D₆) 5.62–5.68 (1 H, ddd, J 17.2, 10.5 and 5.3 Hz, H-4), 5.18 (1 H, dd, J 17.2, 1.7 Hz, H-5), 4.99 (1 H, dd, J 10.5, 1.7 Hz, H-5), 4.19 (1 H, dd, J 10.9, 6.8 Hz, H-1), 3.96–3.98 (1 H, m, H-3), 3.91 (1 H, dd, J 10.9, 6.3 Hz, H-1), 1.91 (1 H, br s, O*H*), 1.73–1.79 (1 H, m, H-2), 1.12 [9 H, s, O₂CC(C(H_3))₃], 0.84 (3 H, d, J 7.0 Hz, 2-C H_3); $\delta_{\rm C}$ (150 MHz, C₆D₆) 178.1, 139.7, 114.9, 73.0, 66.6, 38.8, 38.6, 27.3, 11.1; HRMS (ES⁺) m/z calc. for C₁₁H₂₀O₃Na ([MNa]⁺): 223.1305, found 223.1306.

Hydrazone 79

A solution of hydrazone 10 (0.71 g, 2.94 mmol) in THF (10 mL) was added dropwise to a stirred solution of freshly prepared LDA (3.52 mmol) in THF (30 mL) at $-78 \,^{\circ}\text{C}$. After 90 min a solution of bromide 67 (2.00 g, 3.52 mmol) in THF (15 mL) was added dropwise over 15 min. After a further 1 h at -78 °C the mixture was poured into aqueous pH 7.0 buffer solution (60 mL), and extracted with Et_2O (3 × 40 mL). The combined organic layers were dried (MgSO₄), filtered and concentrated in vacuo. The residue was purified by flash chromatography on silica gel (gradient: 25-40% Et_2O in hexanes with 1% Et_3N) to give **79** (1.81 g, 84%) as a pale yellow oil. $R_f = 0.25$ (silica gel, 3 : 2 hexanes–Et₂O + 1% Et₃N); $[a]_{\rm D}^{25}$ +24.9° (c 1.76 in CH₂Cl₂); $v_{\rm max}$ /cm⁻¹ (film) 2961, 2166, 1615, 1465, 1302, 1172, 906, 671; $\delta_{\rm H}$ (500 MHz, C_6D_6) 7.28 (2 H, d, J 8.6 Hz, Ar*H*), 6.81 (2 H, d, *J* 8.6 Hz, Ar*H*), 5.45 (1 H, d, *J* 9.4 Hz, 11-H), 4.81 (1 H, dd, J 8.2, 6.5 Hz, 7-H), 4.72 (1 H, dd, J 7.0, 2.3 Hz, 14-H), 4.48–4.54 (3 H, m, 16-H and OCH₂Ar), 4.15 (1 H, d, J 12.3 Hz, 16-H), 3.77-3.80 (1 H, m, 9-H), 3.54-3.61 (2 H, m, $NCHCH_2OCH_3$ and $NCHCH_2OCH_3$), 3.32 (3 H, s, $ArOCH_3$), 3.25-3.28 (1 H, m, NCHCH₂OCH₃), 3.18 (4 H, m, NCH₂CH₂ and CH₂OCH₃), 3.07 (1 H, dd, J 14.4, 2.3 Hz, 13-H), 2.79-2.87 (1 H, m, 10-H), 2.41-2.46 (1 H, m, 13-H), 2.31-2.36 (1 H, m, NCH₂CH₂), 2.21–2.26 (1 H, m, 8-H), 2.04 (1 H, ddd, J 13.3, 8.2 and 4.6 Hz, 8-H), 1.85–1.91 (1 H, m, NCHCH₂CH₂), 1.82 (3 H, s, 12-CH₃), 1.50–1.68 (3 H, m, NCHCH₂CH₂, NCH₂CH₂CH₂ and $NCH_2CH_2CH_2$), 1.43 [3 H, s, $O_2C(CH_3)_2$], 1.40 [3 H, s, $O_2C(CH_3)_2$, 1.12 (3 H, d, J 6.9 Hz, 10-CH₃), 0.98 [9 H, s, $SiC(CH_3)_3$], 0.18 (3 H, s, $SiCH_3$), 0.16 [9 H, s, $Si(CH_3)_3$], 0.15 (3 H, s, SiC H_3); δ_C (125 MHz, C₆D₆) 159.7, 158.2, 132.9, 131.7, 129.6, 129.0, 114.0, 108.7, 99.9, 89.4, 79.9, 76.3, 72.2, 71.8, 67.4, 62.2, 58.9, 54.7, 53.4, 41.0, 37.2, 35.7, 27.5, 27.5, 27.3, 26.0, 24.6, 23.2, 18.4, 17.6, 16.6, 15.6, -0.1, -4.1, -4.7; HRMS (ES⁺) m/zcalc. for $C_{40}H_{69}N_2O_6Si_2$ ([MH]⁺): 729.4688, found: 729.4681.

Ketone 81

A solution of hydrazone **79** (1.59 g, 2.18 mmol) in THF (8 mL) was added dropwise to a stirred solution of freshly prepared LDA (2.62 mmol) in THF (15 mL) at -78 °C. After 2 h, a solution of iodide **39** (2.10 g, 2.62 mmol) in THF (7 mL) was added dropwise over 15 min, and the mixture was stirred at -78 °C for before being poured into aqueous pH 7.0 buffer (60 mL). The layers were separated, and the aqueous layer was extracted with Et₂O

 $(3 \times 25 \text{ mL})$. The combined organic layers were dried (MgSO₄), filtered and concentrated in vacuo. The residue was purified by filtration through silica gel with 10% Et₂O in hexanes with 1% Et₃N. This residue was then taken up in sat. aq. (CO₂H)₂ (17 mL) and Et₂O (17 mL) at room temperature, and was stirred vigorously for 16 h. Additional Et₂O (4 mL) and sat. aq. (CO₂H)₂ (4 mL) were then added, and the mixture was stirred for an additional 24 h. The mixture was then diluted with water (10 mL) and extracted with Et₂O (2 \times 20 mL). The combined organic layers were dried (MgSO₄), filtered and concentrated in vacuo. The residue was purified by flash chromatography on silica gel (gradient: 2–15% Et₂O in hexanes) to give **81** (1.811 g, 64% from **79**) as a colourless foam. $R_f = 0.51$ (silica gel, 22 : 3 hexanes–Et₂O); $[a]_D^{25} + 52.5^{\circ}$ (c 0.75) in CH_2Cl_2 ; v_{max}/cm^{-1} (film) 2955, 2171, 1746, 1613, 1472, 1250, 1096, 775; $\delta_{\rm H}$ (600 MHz, C_6D_6) 7.22 (2 H, d, J 8.4 Hz, ArH), 6.87 (2 H, d, J 8.4 Hz, ArH), 5.27 (1 H, d, J 9.2 Hz, 11-H), 4.98 (1 H, dt, J 10.1, 3.1 Hz, 25-H), 4.68-4.70 (1 H, m, 7-H), 4.45 (2 H, s, OCH₂Ar), 4.17 (1 H, dd, J 9.8, 2.2 Hz, 14-H), 4.03 (1 H, dd, J 7.3, 4.2 Hz, 16-H), 3.87–3.92 (2 H, m, 19-H and 21-H), 3.73–3.76 (1 H, m, 24-H), 3.64–3.67 (1 H, m, 9-H), 3.34 (3 H, s, ArOCH₃), 2.65– 2.71 (2 H, m, 10-H and 13-H), 2.08–2.17 (2 H, m, 8-H and 13-H), 1.96–2.02 (1 H, m, 17-H), 1.60–1.92 (11 H, m, 8-H, 17-H, 18-H, 18-H, 20-H, 20-H, 22-H, 23-H, 23-H, 26-H and 26-H), 1.56 (3 H, s, 12-CH₃), 1.23–1.42 (5 H, m, 22-H, 27-H, 27-H, 28-H and 28-H), 1.44 [3 H, s, $O_2C(CH_3)_2$], 1.39 [3 H, s, $O_2C(CH_3)_2$], 1.18 [9 H, s, $O_2CC(CH_3)_3$], 1.00 (3 H, d, J 6.8 Hz, 10-C H_3), 0.98 [9 H, s, $SiC(CH_3)_3$, 0.96 [9 H, s, $SiC(CH_3)_3$], 0.96 [9 H, s, $SiC(CH_3)_3$], 0.95 [9 H, s, $SiC(CH_3)_3$], 0.83 (3 H, t, J 6.8 Hz, 28-C H_3), 0.20 (3 H, s, SiCH₃), 0.18 (3 H, s, SiCH₃), 0.14 (3 H, s, SiCH₃), 0.13 [9 H, s, $Si(CH_3)_3$, 0.12 (3 H, s, $SiCH_3$), 0.12 (3 H, s, $SiCH_3$), 0.11 (3 H, s, SiC H_3), 0.09 (6 H, s, SiC H_3 and SiC H_3); δ_C (150 MHz, C₆D₆) 209.9, 177.3, 159.6, 131.6, 129.5, 129.0, 113.9, 108.6, 101.0, 89.2, 78.9, 75.4, 74.5, 74.1, 73.2, 72.2, 69.9, 69.9, 62.1, 54.7, 45.2, 41.0, 38.9, 38.4, 35.8, 34.0, 33.2, 28.7, 28.1, 27.8, 27.4, 26.2, 26.2, 26.1, 26.1, 25.0, 24.2, 24.1, 22.8, 18.4, 18.3, 18.3, 18.2, 17.3, 16.7, 14.2, 0.0, -4.1, -4.1, -4.2, -4.2, -4.3, -4.7; HRMS (ES⁺) m/z calc. for $C_{70}H_{132}O_{11}Si_5Na$ ([MNa]⁺): 1311.8508, found: 1311.8503.

Acetal 82

To a stirred solution of ketone **81** (1.80 g, 1.40 mmol) in 4: 1 MeOH-CH₂Cl₂ (100 mL) was added TsOH·H₂O (133 mg, 0.698 mmol) in one portion at room temperature. After 16 h, another portion of TsOH·H₂O (133 mg, 0.698 mmol) was added, and stirring continued for a further 4 h. Et₃N (2 mL) was then added to the mixture, which was subsequently concentrated in vacuo. The residue was purified by flash chromatography on silica gel (gradient: 50–66% EtOAc in hexanes) to give **82** (0.716 g, 64%) as a white foam. ¹H-NMR, ¹³C-NMR and HSQC analysis revealed the product to be a 1.4:1 mixture of anomers at the C-15 position. $R_{\rm f} = 0.31 \, (1:2 \, {\rm hexanes-EtOAc}); [a]_{\rm D}^{25} + 20.8^{\circ} \, (c \, 1.06 \, {\rm in} \, {\rm CH_2Cl_2});$ $v_{\rm max}/{\rm cm}^{-1}$ (film) 3424, 2956, 2171, 1728, 1614, 1514, 1455, 1123; $\delta_{\rm H}$ $(600 \text{ MHz}, C_6D_6) 7.27 [4 \text{ H}, d, J 8.2 \text{ Hz}, \text{Ar} H \text{ (anomers a and b)]},$ 6.81 [4 H, d, J 8.2 Hz, ArH (a and b)], 5.29 [2 H, d, J 7.1 Hz, 11-H (a and b)], 5.02–5.08 [2 H, m, 25-H (a and b)], 4.83 (1 H, br s, OH), 4.72–4.75 [2 H, m, 7-H (a and b)], 4.54 [2 H, d, J 11.0 Hz, OCH₂Ar (a and b)], 4.46 [2 H, d, J 11.0 Hz, OC H_2 Ar (a and b)], 4.24 (1 H, br s, OH), 4.04–4.07 [1 H, m, 14-H (a and b)], 3.98–4.00 [2 H, m, 16-H (a and b)], 3.90–3.94 [2 H, m, 21-H (a and b)], 3.78–3.82 [1 H,

m, 19-H (a)], 3.68–3.75 [5 H, m, 9-H (a and b), 19-H (b) and 24-H (a and b)], 3.37 [6 H, s, ArOCH₃ (a and b)], 3.14 [6 H, s, OCH₃ (a and b)], 2.82–2.87 [2 H, m, 10-H (a and b)], 2.33–2.43 [4 H, m, 13-H (a and b) and 13-H (a and b)], 2.14–2.20 [3 H, m, 8-H (a and b) and 17-H (a)], 1.91-2.00 [5 H, m, 8-H (a and b), 17-H (b) and 18-H (a and b)], 1.72 [6 H, s, 12-CH₃ (a and b)], 1.53–1.85 [15 H, m, 17-H (a and b), 20-H (a and b), 22-H (a and b), 22-H (a), 23-H (a and b), 23-H (a and b), 27-H (a and b) and 27-H (a and b)], 1.24 [9 H, s, $O_2CC(CH_3)_3$], 1.24 [9 H, s, $O_2CC(CH_3)_3$], 1.20–1.48 [6 H, m, 20-H (a and b), 22-H (b), 27-H (a and b), 27-H (a and b), 28-H (a and b) and 28-H (a and b)], 1.11-1.18 [2 H, m, 18-H (a and b)[, 1.08 p6 H, d, J 6.5 Hz, 10-CH₃ (a and b)], 0.88-0.93 [6 H, m, 28-C H_3 (a and b)]; δ_C (150 MHz, C_6D_6) 178.2, 159.6, 133.1, 133.0, 131.1, 129.7, 129.5, 129.4, 114.0, 108.5, 97.8, 88.8, 80.8, 76.6, 76.3, 72.7, 72.6, 72.4, 72.0, 72.0, 72.0, 71.9, 71.8, 71.7, 71.5, 71.0, 67.3, 61.7, 54.8, 47.7, 42.7, 40.9, 40.8, 39.8, 39.8, 39.1, 35.5, 34.2, 34.0, 33.1, 30.8, 30.1, 29.0, 28.5, 28.5, 28.2, 27.4, 27.4, 26.6, 26.5, 25.3, 23.1, 22.9, 17.0, 16.9, 15.9, 14.2, 0.1; HRMS (ES⁺) m/z calc. for C₄₄H₇₄O₁₁SiNa ([MNa]⁺): 829.4892, found 829.4892.

t-Butyldimethylsilyl ether 83

To a stirred solution of alkyne 82 (539 mg, 0.668 mmol) and 2,6-lutidine (1.17 mL, 10.0 mmol) in CH₂Cl₂ (30 mL) was added TBSOTf (1.15 mL, 5.0 mmol) dropwise at -78 °C. The mixture was warmed to 0 °C and stirred for a further 90 min, before being partitioned between a 1 : 1 sat. aq. NaHCO₃brine mixture (40 mL) and CH₂Cl₂ (20 mL). The layers were separated, and the aqueous layer was extracted with CH₂Cl₂ (2 × 30 mL). The combined organic layers were dried (MgSO₄), filtered and concentrated in vacuo. The residue was purified by flash chromatography on silica gel (gradient: 2–3% Et₂O in hexanes) to give 83 (498 mg, 54%) as a pale yellow oil. ¹H-NMR, ¹³C-NMR and HSQC analysis revealed the product to be a 1.4:1 mixture of anomers at the C-15 position. $R_f = 0.23 (24 : 1 \text{ hexanes-Et}_2\text{O}); [a]_D^{25}$ $+3.3^{\circ}$ (c 0.6 in CH₂Cl₂); $v_{\text{max}}/\text{cm}^{-1}$ (film) 2953, 2857, 2171, 1728, 1614, 1514, 1462, 1250, 1123, 839; $\delta_{\rm H}$ (500 MHz, C_6D_6 , 343 K) 7.26 [4 H, d, J 8.5 Hz, ArH (anomers a and b)], 6.79 [4 H, d, J 8.5 Hz, ArH (a and b)], 5.38 [2 H, d, J 9.8 Hz, 11-H (a and b)], 4.99–5.02 [1 H, m, 25-H (a)], 4.97–5.00 [1 H, m, 25-H (b)], 4.76 [2 H, dd, J 8.6, 5.6 Hz, 7-H (a and b)], 4.56 [2 H, d, J 11.2 Hz, OC H_2 Ar (a and b)], 4.51 [2 H, d, J 11.2 Hz, OCH₂Ar (a and b)], 4.32 [2 H, d, J 9.1 Hz, 14-H (a and b)], 3.93–3.97 [2 H, m, 19-H (a and b)], 3.81–3.86 [5 H, m, 16-H (a and b), 21-H (a and b) and 24-H (b)], 3.77-3.80 [1 H, m, 24-H (a)], 3.72–3.76 [2 H, m, 9-H (a and b)], 3.41 [6 H, s, $ArOCH_3$ (a and b)], 3.29 [3 H, s, OCH_3 (a)], 3.27 [3 H, s, OCH_3 (b)], 2.80–2.86 [2 H, m, 10-H (a and b)], 2.67 [2 H, d, J 13.9 Hz, 13-H (a and b)], 2.36–2.41 [2 H m, 13-H (a and b)], 2.09–2.16 [4 H, m, 8-H (a and b) and 17-H (a and b)], 1.94–2.03 [5 H, m, 8-H (a and b), 20-H (a and b) and 26-H (b)], 1.74 [6 H, s, 12-CH₃ (a and b)], 1.48-1.79 [16 H, m, 17-H (a and b), 18-H (a and b), 20-H (a and b), 22-H (a and b), 22-H (a and b), 23-H (a and b), 23-H (a and b), 26-H (a and b)], 1.24-1.44 [9 H, m, 18-H (a and b), 26-H (a), 27-H (a and b), 27-H (a and b), 28-H (a and b) and 28-H (a and b)], 1.20 [9 H, s, $O_2CC(CH_3)_3$], 1.19 [9 H, s, $O_2CC(CH_3)_3$], 1.15 [6 H, d, J 6.8 Hz, 10-C H_3 (a and b)], 1.01 [18 H, s, SiC(C H_3)₃ and $SiC(CH_3)_3$, 1.00 [18 H, s, $SiC(CH_3)_3$ and $SiC(CH_3)_3$], 0.99 [9 H, s, $SiC(CH_3)_3$, 0.98 [9 H, s, $SiC(CH_3)_3$], 0.98 [9 H, s, $SiC(CH_3)_3$], 0.97 [9 H, s, SiC(C H_3)₃], 0.96 [18 H, s, SiC(C H_3)₃ and SiC(C H_3)₃], 0.87

[3 H, t, J 7.2 Hz, 28-C H_3 (a)], 0.85 [3 H, t, J 6.9 Hz, 28-C H_3 (b)], 0.26 (6 H, s, SiC H_3 and SiC H_3), 0.23 (6 H, s, SiC H_3 and SiC H_3), 0.17 (6 H, s, SiC H_3 and SiC H_3), 0.16 [18 H, s, Si(H_3), (a and b)], 0.15 (3 H, s, SiC H_3), 0.15 (9 H, s, SiC H_3), 0.15 (6 H, s, SiC H_3), 0.15 (9 H, s, SiC H_3), 0.11 (3 H, s, SiC H_3), 0.13 (6 H, s, SiC H_3), 0.15 (9 H, s, SiC H_3), 0.11 (3 H, s, SiC H_3), 0.17 (13 H, s, SiC H_3), 0.19 (6 H, s, SiC H_3), 0.12 (3 H, s, SiC H_3), 0.11 (3 H, s, SiC H_3), 0.09 (6 H, s, SiC H_3) and SiC H_3); δ_C (125 MHz, C_6D_6 , 343 K) 177.3, 159.8, 134.0, 132.0, 129.9, 129.4, 114.2, 109.0, 100.4, 89.4, 80.4, 76.3, 75.6, 73.6, 72.9, 72.3, 71.9, 69.7, 69.5, 69.0, 68.9, 67.9, 62.5, 54.9, 48.7, 44.3, 44.1, 43.2, 41.3, 39.0, 36.1, 34.5, 34.4, 32.1, 28.6, 28.5, 27.9, 27.7, 27.5, 27.5, 26.6, 26.5, 26.2, 26.1, 25.3, 24.2, 23.0, 22.8, 19.1, 18.5, 18.4, 18.3, 16.6, 16.3, 14.0, 0.0, -2.5, -3.5, -3.6, -3.8, -3.9, -3.9, -4.0, -4.1, -4.3, -4.5; HRMS (ES⁺) m/z calc. for $C_{74}H_{144}O_{11}Si_6Na$ ([MNa]⁺): 1399.9216, found 1392.9186.

Alkyne 84

To a stirred solution of alkyne 83 (390 mg, 0.283 mmol) in 4:1 MeOH-Et₂O (10 mL) was added finely powdered K₂CO₃ (391 mg, 2.829 mmol) in one portion at room temperature. After 4 h, the mixture was partitioned between Et₂O (30 mL) and water (30 mL). The layers were separated, and the aqueous layer was extracted with Et₂O (2 \times 20 mL). The combined organic layers were washed with brine (1 \times 20 mL), dried (MgSO₄), filtered and concentrated in vacuo. The residue was purified by flash chromatography on silica gel (gradient: 2–4% Et₂O in hexanes) to give **84** (309 mg, 84%) as a colourless syrup. 1H-NMR, 13C-NMR and HSQC analysis revealed the product to be a 1.4:1 mixture of anomers at the C-15 position. $R_f = 0.21 (23 : 2 \text{ hexanes-Et}_2\text{O}); [a]_D^{25} + 5.3^{\circ} (c \ 0.38)$ in CH₂Cl₂); $v_{\text{max}}/\text{cm}^{-1}$ (film) 2955, 2857, 2280, 1727, 1614, 1514, 1463, 1250, 1123, 835; $\delta_{\rm H}$ (600 MHz, C₆D₆, 343 K) 7.24 [4 H, d, J 8.5 Hz, ArH (anomers a and b)], 6.78 [4 H, d, J 8.5 Hz, ArH (a and b)], 5.35 [2 H, d, J 9.1 Hz, 11-H (a and b)], 4.99–5.01 [1 H, m, 25-H (a)], 4.96-4.99 [1 H, m, 25-H (b)], 4.71-4.73 [2 H, m, 7-H (a and b)], 4.54 [2 H, d, J 11.2 Hz, OCH₂Ar (a and b)], 4.46 [2 H, d, J 11.2 Hz, OCH₂Ar (a and b)], 4.32 [2 H, d, J 9.1 Hz, 14-H (a and b)], 3.95–3.99 [2 H, m, 19-H (a and b)], 3.81–3.85 [5 H, m, 16-H (a and b), 21-H (a and b) and 24-H (b)], 3.77-3.80 [1 H, m, 24-H (a)], 3.68–3.71 [2 H, m, 9-H (a and b)], 3.40 [6 H, s, ArOCH₃ (a and b)], 3.28 [3 H, s, OCH₃ (a)], 3.26 [3 H, s, OCH₃ (b)], 2.81–2.85 [2 H, m, 10-H (a and b)], 2.69 [2 H, d, J 13.9 Hz, 13-H (a and b)], 2.34–2.38 [2 H, m, 13-H (a and b)], 2.08–2.15 [4 H, m, 5-H (a and b) and 8-H (a and b)], 1.95–1.99 [5 H, m, 8-H (a and b), 20-H (a and b) and 26-H (b)], 1.72 [6 H, s, 12-CH₃ (a and b)], 1.46–1.80 [20 H, m, 17-H (a and b), 17-H (a and b), 18-H (a and b), 18-H (a and b), 20-H (a and b), 22-H (a and b), 22-H (a and b), 23-H (a and b), 23-H (a and b) and 26-H (a and b)], 1.24–1.44 [7 H, m, 26-H (a), 27-H (a and b), 27-H (a and b), 28-H (a and b) and 28-H (a and b)], 1.20 [9 H, s, O₂CC(CH₃)₃], 1.18 [9 H, s, O₂CC(CH₃)₃], 1.13 [6 H, d, J 6.8 Hz, $10\text{-C}H_3$ (a and b)], $1.00 [18 \text{ H}, \text{ s}, \text{SiC}(\text{C}H_3)_3 \text{ and}]$ $SiC(CH_3)_3$, 0.99 [18 H, s, $SiC(CH_3)_3$ and $SiC(CH_3)_3$], 0.98 [9 H, s, $SiC(CH_3)_3$, 0.98 [18 H, s, $SiC(CH_3)_3$ and $SiC(CH_3)_3$], 0.96 [9 H, s, $SiC(CH_3)_3$, 0.95 [18 H, s, $SiC(CH_3)_3$ and $SiC(CH_3)_3$], 0.87 [3 H, t, J 7.2 Hz, 28-C H_3 (a)], 0.85 [3 H, t, J 6.9 Hz, 28-C H_3 (b)], 0.24 $(6 \text{ H}, \text{ s}, \text{SiC}H_3 \text{ and SiC}H_3), 0.22 (6 \text{ H}, \text{ s}, \text{SiC}H_3 \text{ and SiC}H_3), 0.19$ (3 H, s, SiC H_3), 0.17 (9 H, s, SiC H_3 , SiC H_3 and SiC H_3), 0.16 (6 H, s, SiC H_3 and SiC H_3), 0.15 (3 H, s, SiC H_3), 0.13 (3 H, s, SiC H_3), $0.12 (6 \text{ H}, \text{ s}, \text{SiC}H_3 \text{ and SiC}H_3), 0.12 (6 \text{ H}, \text{ s}, \text{SiC}H_3 \text{ and SiC}H_3),$ $0.11 (3 \text{ H}, \text{ s}, \text{SiC}H_3), 0.10 (3 \text{ H}, \text{ s}, \text{SiC}H_3), 0.09 (6 \text{ H}, \text{ s}, \text{SiC}H_3)$ and

SiC H_3); δ_C (150 MHz, C_6D_6 , 343 K) 177.3, 159.8, 134.1, 131.9, 129.8, 129.4, 129.2, 114.2, 100.3, 86.2, 80.1, 76.3, 75.5, 73.6, 72.9, 72.9, 72.2, 71.9, 69.6, 69.4, 68.9, 68.8, 67.8, 61.8, 54.9, 44.3, 43.2, 41.2, 39.0, 35.9, 34.4, 34.3, 32.0, 28.6, 28.5, 27.9, 27.5, 27.4, 26.7, 26.6, 26.4, 26.2, 26.1, 26.1, 25.4, 23.0, 22.8, 19.0, 18.5, 18.4, 18.3, 16.5, 16.1, 14.0, -2.5, -3.5, -3.6, -3.7, -3.9, -3.9, -4.0, -4.1, -4.2, -4.3, -4.6; HRMS (ES⁺) m/z calc. for $C_{71}H_{136}O_{11}Si_5Na$ ([MNa]⁺): 1327.8821, found 1327.8835.

Alcohol 85

To a stirred solution of pivalate 84 (300 mg, 0.23 mmol) in THF (14 mL) was added Super Hydride® (0.92 mL, 1.0 M in THF, 0.92 mmol) dropwise at 0 °C. After 1.5 h the reaction was quenched by the cautious addition of water (5 mL). The mixture was partitioned between sat. aq. NH₄Cl (20 mL) and Et₂O (20 mL), and the layers were separated. The aqueous layer was extracted with Et_2O (2 × 20 mL), and the combined organic layers were washed with brine (1 × 20 mL), dried (MgSO₄), filtered and concentrated in vacuo. The residue was purified by flash chromatography on silica gel (gradient: 4-8% Et₂O in hexanes) to give **85** (209 mg, 74%) as a colourless oil. ¹H-NMR, ¹³C-NMR and HSQC analysis revealed the product to be a 1.4: 1 mixture of anomers at the C-15 position. $R_f = 0.32$ (22 : 3 hexanes–Et₂O); $[a]_D^{25} - 10.8^{\circ}$ (c 0.48) in CH₂Cl₂); v_{max} /cm⁻¹ (film) 3459, 2957, 2856, 2280, 1615, 1514, 1472, 1251, 1122, 836; $\delta_{\rm H}$ (600 MHz, C₆D₆, 343 K) 7.25 [4 H, d, J 8.4 Hz, ArH (anomers a and b)], 6.79 [4 H, d, J 8.4 Hz, ArH (a and b)], 5.37 [2 H, d, J 9.1 Hz, 11-H (a and b)], 4.73–4.75 [2 H, m, 7-H (a and b)], 4.55 [2 H, d, J 11.2 Hz, OCH₂Ar (a and b)], 4.47 [2 H, d, J 11.2 Hz, OC H_2 Ar (a and b)], 4.34–4.37 [2 H, d, J 9.1 Hz, 14-H (a and b)], 4.01–4.03 [1 H, m, 19-H (a)], 3.94–3.97 [1 H, m, 19-H (b)], 3.83–3.87 [4 H, m, 16-H (a and b) and 21-H (a and b)], 3.70–3.73 [2 H, m, 9-H (a and b)], 3.52–2.55 [2 H, m, 25-H (a and b)], 3.47–3.49 [2 H, m, 24-H (a and b)], 3.40 [6 H, s, ArOCH₃ (a and b)], 3.30 [6 H, s, OCH₃ (a and b)], 2.82–2.86 [2 H, m, 10-H (a and b)], 2.71–2.74 [2 H, m, 13-H (a and b)], 2.36–2.40 [2 H, m, 13-H (a and b)], 2.10–2.14 [5 H, m, 5-H (a and b), 8-H (a and b) and 17-H (a)], 1.96-2.00 [4 H, m, 8-H (a and b) and 20-H (a and b)], 1.74 [6 H, s, 12-CH₃ (a and b)], 1.46–1.79 [17 H, m, 17-H (a and b), 18-H (a and b), 20-H (a and b), 22-H (a and b), 22-H (a and b), 23-H (a and b), 23-H (a and b), 26-H (a and b) and 26-H (b)], 1.25–1.40 [12 H, m, 17-H (b), 18-H (a and b), 26-H (a), 27-H (a and b), 27-H (a and b), 28-H (a and b) and 28-H (a and b)], $1.14[6 \text{ H}, d, J 6.8 \text{ Hz}, 10\text{-C}H_3 \text{ (a and b)]}, 1.02[18 \text{ H}, \text{s}, \text{SiC}(\text{C}H_3)_3]$ and SiC(CH_3)₃], 1.00 [18 H, s, SiC(CH_3)₃ and SiC(CH_3)₃], 0.99 [9 H, s, SiC(C H_3)₃], 0.99 [9 H, s, SiC(C H_3)₃], 0.96 [18 H, s, SiC(C H_3)₃ and SiC(C H_3)₃], 0.93 [18 H, s, SiC(C H_3)₃ and SiC(C H_3)₃], 0.91 [3 H, t, J 7.3 Hz, $28\text{-C}H_3$ (a)], 0.87 [3 H, t, J 7.1 Hz, $28\text{-C}H_3$ (b)], 0.26 (6 H, s, SiCH₃ and SiCH₃), 0.24 (6 H, s, SiCH₃ and SiCH₃), $0.18 (6 \text{ H}, \text{ s}, \text{SiC}H_3 \text{ and SiC}H_3), 0.17 (6 \text{ H}, \text{ s}, \text{SiC}H_3 \text{ and SiC}H_3),$ $0.16 (3 \text{ H}, \text{ s}, \text{SiC}H_3), 0.14 (3 \text{ H}, \text{ s}, \text{SiC}H_3), 0.13 (3 \text{ H}, \text{ s}, \text{SiC}H_3),$ $0.13 (6 \text{ H}, \text{ s}, \text{SiC}H_3 \text{ and SiC}H_3), 0.12 (3 \text{ H}, \text{ s}, \text{SiC}H_3), 0.10 (6 \text{ H}, \text{ s},$ $SiCH_3$ and $SiCH_3$), 0.09 (6 H, s, $SiCH_3$ and $SiCH_3$), 0.07 (3 H, s, $SiCH_3$), 0.07 (3 H, s, $SiCH_3$); δ_C (150 MHz, C_6D_6 , 343 K) 160.3, 134.6, 132.4, 130.3, 130.3, 129.9, 129.8, 114.7, 100.8, 86.7, 80.6, 77.1, 76.9, 74.4, 73.8, 73.4, 72.8, 72.4, 70.4, 70.3, 69.4, 68.4, 62.3, 55.4, 44.9, 44.8, 43.8, 41.8, 36.5, 36.4, 34.9, 34.5, 34.3, 33.5, 30.5, 30.0, 29.1, 28.3, 28.1, 27.2, 27.1, 27.0, 26.7, 26.7, 26.6, 25.9, 23.8, 23.6, 19.6, 19.1, 18.9, 18.8, 17.0, 16.6, 16.6, 14.7, 14.6, -2.0, -2.9, -3.2, -3.3, -3.4, -3.5, -3.6, -3.6, -3.7, -3.7, -4.1; HRMS (ES⁺) m/z calc. for $C_{66}H_{128}O_{10}Si_5Na$ ([MNa]⁺): 1243.8246, found 1243.8277.

Alkyne 86

To a stirred solution of alkyne 82 (113 mg, 0.14 mmol) in 5: 1 MeOH-Et₂O (7 mL) was added K₂CO₃ (193 mg, 1.4 mmol) in one portion at room temperature. After 4 h the mixture was diluted with Et₂O (20 mL), filtered through a pad of Celite[®], washing thoroughly with Et₂O, and the filtrate was concentrated under reduced pressure. The residue was triturated with CH₂Cl₂, filtered and the filtrate was concentrated under reduced pressure. The residue was purified by flash chromatography on silica gel (gradient: 50–80% EtOAc in hexanes) to give **86** (31 mg, 30%) as a colourless paste. 1H-NMR, 13C-NMR and HSQC analysis revealed the product to be a 1.4:1 mixture of anomers at the C-15 position. $R_f = 0.13$ (1 : 2 hexanes–EtOAc); $[a]_D^{25} + 10.3^{\circ}$ (c 1.31) in CH₂Cl₂); v_{max} /cm⁻¹ (film) 3448, 2956, 2872, 2279, 1718, 1612, 1513, 1458, 1158, 1115, 740; $\delta_{\rm H}$ (600 MHz, C_6D_6 , 343 K) 7.23 [4 H, d, J 8.3 Hz, ArH (anomers a and b)], 6.81 [4 H, d, J 8.3 Hz, ArH (a and b)], 5.27 [2 H, d, J 9.0 Hz, 11-H (a and b)], 4.99–5.03 [2 H, m, 25-H (a and b)], 4.57–4.59 [2 H, m, 7-H (a and b)], 4.50 [2 H, d, J 11.1 Hz, OC H_2 Ar (a and b)], 4.42 [1 H, d, J 11.1 Hz, OC H_2 Ar (a and b)], 4.22 (2 H, br s, OH and OH), 3.99 [2 H, d, J 10.0 Hz, 14-H (a and b)], 3.89–3.92 [2 H, m, 16-H (a and b)], 3.83–3.86 [1 H, m, 21-H (a)], 3.74–3.78 [3 H, m, 19-H (a and b) and 21-H (b)], 3.62–3.68 [4 H, m, 9-H (a and b) and 24-H (a and b)], 3.39 [6 H, s, ArOC H_3 (a and b)], 3.13 [6 H, s, OC H_3 (a and b)], 2.78–2.82 [2 H, m, 10-H (a and b)], 2.42 [1 H, d, J 13.9 Hz, 13-H (a)], 2.22-2.28 [3 H, m, 13-H (a and b) and 13-H (b)], 2.06–2.11 [2 H, m, 8-H (a and b)], 1.85–1.95 [6 H, m, 8-H (a and b), 17-H (a and b) and 18-H (a and b)], 1.69 [6 H, s, 12-CH₃ (a and b)], 1.56–1.78 [15 H, m, 5-H (a and b), 17-H (a and b), 20-H (a and b), 22-H (a and b), 22-H (a and b), 23-H (a and b), 23-H (b) and 26-H (a and b)], 1.22–1.47 [13 H, m, 20-H (a and b), 23-H (a), 26-H (a and b), 27-H (a and b), 27-H (a and b), 28-H (a and b) and 28-H (a and b)], 1.21 [9 H, s, $O_2CC(CH_3)_3$], 1.21 [9 H, s, $O_2CC(CH_3)_3$], 1.10–1.14 [2 H, m, 18-H (a and b)], 1.04 [6 H, d, J 6.7 Hz, 10-CH₃ (a and b)], 0.87–0.90 [3 H, m, 28-C H_3 (a and b)]; δ_C (150 MHz, C_6D_6 , 343 K) 178.0, 159.9, 133.7, 133.5, 131.4, 129.8, 129.7, 129.6, 129.5, 125.7, 114.3, 98.3, 86.0, 80.9, 76.8, 76.6, 73.5, 73.1, 72.9, 72.6, 72.1, 72.1, 72.0, 71.8, 71.1, 71.0, 67.1, 61.2, 54.9, 47.9, 43.4, 43.2, 40.9, 40.2, 40.2, 39.1, 35.8, 34.4, 34.1, 33.5, 30.5, 30.4, 30.1, 29.7, 28.3, 28.1, 27.4, 26.9, 26.6, 25.3, 25.3, 22.9, 22.8, 17.1, 17.1, 15.8, 14.0, 14.0; HRMS (ES⁺) m/z calc. for $C_{41}H_{66}O_{11}Na$ ([MNa]⁺): 757.4497, found 757.4496.

Diene 91

Alkyne **85** (65 mg, 53.2 µmol) and Grubbs second-generation catalyst **88** (2.3 mg, 2.7 µmol) were dissolved in CH₂Cl₂ (4 mL) in a microwave reactor tube (9.0 \times 1.5 cm) equipped with a stirrer bar at room temperature. The solution was purged with ethylene (from a balloon) for 5 min, then sealed and microwaved (2 \times 20 min, 100 W microwave power, 55 °C maximum temperature). After cooling to room temperature, the reactor tube was opened, another portion of catalyst **88** (2.3 mg, 2.7 µmol) was added, the mixture was purged with ethylene for 5 min, then the tube was sealed and microwaved

again (1 × 50 min, 100 W microwave power, 55 °C maximum temperature). After cooling to room temperature, the reactor tube was opened and the mixture concentrated. The residue was purified by flash chromatography on silica gel (gradient: 2-6% Et₂O in hexanes) to give **91** (53 mg, 80%) as a colourless oil. ¹H-NMR, ¹³C-NMR and HSQC analysis revealed the product to be a 1.4 : 1 mixture of anomers at the C-15 position. $R_{\rm f} = 0.38$ (21 : 4 hexanes–Et₂O); $[a]_{D}^{25}$ –2.2° (c 0.46 in CH₂Cl₂); v_{max} /cm⁻¹ (film) 3546, 2955, 2861, 1614, 1514, 1472, 1252, 1123, 1095; $\delta_{\rm H}$ (600 MHz, C₆D₆, 343 K) 7.30 [4 H, d, J 8.0 Hz, ArH (anomers a and b)], 6.84 [4 H, d, J 8.0 Hz, ArH (a and b)], 6.36 [2 H, dd, J 17.7, 11.1 Hz, 5-H (a and b)], 5.56 [2 H, d, J 17.7 Hz, 5= CH_2 (a and b)], 5.46 [2 H, d, J 9.2 Hz, 11-H (a and b)], 5.07–5.10 [6 H, m, $5=CH_2$ (a and b), $6=CH_2$ (a and b) and $6=CH_2$ (a and b)], 4.62-4.65 [2 H, m, 7-H (a and b)], 4.55 [2 H, d, J 11.3 Hz, OC H_2 Ar (a and b)], 4.47 [2 H, d, J 11.3 Hz, OCH₂Ar (a and b)], 4.37 [2 H, app d, J 8.7 Hz, 14-H (a and b)], 4.03–4.07 [1 H, m, 19-H (a)], 4.07 [1 H, m, 19-H (b)], 3.88–3.94 [4 H, m, 16-H (a and b) and 21-H (a and b)], 3.56-3.60 [2 H, m, 25-H (a and b)], 3.51-3.54 [4 H, m, 9-H (a and b) and 24-H (a and b)], 3.39 [6 H, s, ArOC H_3 (a and b)], 3.33 [3 H, s, OCH₃ (a)], 3.33 [3 H, s, OCH₃ (b)], 2.89–2.94 [2 H, m, 10-H (a and b)], 2.74 [2 H, d, J 13.7 Hz, 13-H (a and b)], 2.44–2.48 [2 H, m, 13-H (a and b)], 2.09–2.18 [2 H, 8-H (a and b)], 2.00-2.07 [4 H, m, 8-H (a and b) and 20-H (a and b)], 1.80 [6 H, s, 12-CH₃ (a and b)], 1.48–1.90 [20 H, m, 17-H (a and b), 17-H (a and b), 18-H (a and b), 20-H (a and b), 22-H (a and b), 22-H (a and b), 23-H (a and b), 26-H (a and b) and 26-H (a and b)], 1.26–1.44 [10 H, m, 18-H (a and b), 27-H (a and b), 27-H (a and b), 28-H (a and b) and 28-H (a and b)], 1.24 [6 H, d, J 6.8 Hz, 10-C H_3 (a and b)], 1.06 [18 H, s, SiC(C H_3)₃ and $SiC(CH_3)_3$, 1.04 [18 H, s, $SiC(CH_3)_3$ and $SiC(CH_3)_3$], 1.03 [9 H, s, $SiC(CH_3)_3$], 1.02 [9 H, s, $SiC(CH_3)_3$], 0.99 [18 H, s, $SiC(CH_3)_3$ and $SiC(CH_3)_3$, 0.96 [18 H, s, $SiC(CH_3)_3$ and $SiC(CH_3)_3$], 0.93 (3 H, t, J 7.2 Hz, 28-C H_3), 0.90 [3 H, t, J 7.1 Hz, 28-C H_3 (b)], 0.32 [6 H, s, $SiCH_3$ and $SiCH_3$ (a)], 0.29 (6 H, s, $SiCH_3$ and $SiCH_3$), 0.22 (6 H, s, SiC H_3 and SiC H_3), 0.19 (3 H, s, SiC H_3), 0.17 (6 H, s, SiC H_3 and $SiCH_3$), 0.17 (3 H, s, $SiCH_3$), 0.15 (6 H, s, $SiCH_3$ and $SiCH_3$), $0.15 (3 \text{ H}, \text{ s}, \text{SiC}H_3), 0.13 (3 \text{ H}, \text{ s}, \text{SiC}H_3), 0.13 (6 \text{ H}, \text{ s}, \text{SiC}H_3)$ and $SiCH_3$), 0.12 (3 H, s, $SiCH_3$), 0.10 (3 H, s, $SiCH_3$), 0.10 (3 H, s, $SiCH_3$), 0.09 (3 H, s, $SiCH_3$); δ_C (150 MHz, C_6D_6 , 343 K) 150.1, 136.0, 133.8, 132.2, 130.2, 130.2, 129.2, 129.0, 115.1, 114.2, 114.0, 100.4, 80.0, 76.6, 76.3, 73.9, 73.4, 73.0, 71.9, 71.3, 69.9, 69.8, 68.9, 67.9, 54.9, 44.4, 44.3, 43.3, 39.8, 35.6, 34.0, 33.8, 33.1, 30.5, 29.9, 29.5, 28.6, 27.7, 26.7, 26.6, 26.4, 26.1, 25.4, 23.3, 23.1, 19.1, 18.5, 18.4, 18.3, 18.3, 16.4, 16.3, 14.1, 14.0, -2.5, -2.5, -3.4, -3.6,-3.8, -3.8, -3.9, -3.9, -4.0, -4.1, -4.2, -4.3, -4.6; HRMS (ES⁺) m/z calc. for $C_{68}H_{132}O_{10}Si_5Na$ ([MNa]⁺): 1271.8559, found 1271.8869.

Ester 94

To a stirred solution of acid 75 (134 mg, 0.548 mmol) in toluene (6 mL) were added 2,4,6-trichlorobenzoyl chloride (86 μ L, 0.548 mmol) and Et₃N (153 μ L, 1.096 mmol) sequentially at room temperature. After 2 h, a solution of alcohol 85 (134 mg, 0.11 mmol) in toluene (6 mL) was added to the mixture, followed by a few crystals of 4-DMAP. After 45 min, the mixture was partitioned between sat. aq. NH₄Cl (30 mL) and Et₂O (30 mL). The layers were separated, and the aqueous layer was extracted

with Et₂O (3 \times 20 mL). The combined organic layers were washed with a 1 : 1 sat. aq. NaHCO₃-brine mixture (1 \times 30 mL), dried (MgSO₄), filtered and concentrated in vacuo. The residue was purified by flash chromatography on silica gel (gradient: 2-4% Et₂O in hexanes) to give **94** (146 mg, 92%) as a colourless oil. ¹H-NMR, ¹³C-NMR and HSQC analysis revealed the product to be a 1.4 : 1 mixture of anomers at the C-15 position. $R_{\rm f} = 0.17$ (25 : 1 hexanes-Et₂O); $[a]_D^{25}$ -1.9° (c 0.48 in CH₂Cl₂); v_{max}/cm^{-1} (film) 2953, 2856, 2280, 1731, 1614, 1472, 1463, 1251, 1095, 837, 776; $\delta_{\rm H}$ (600 MHz, C₆D₆, 343 K) 7.26 [4 H, d, J 8.6 Hz, ArH (anomers a and b)], 6.80 [4 H, d, J 8.6 Hz, ArH (a and b)], 5.92 [1 H, ddd, J 17.2, 10.4 and 6.8 Hz, 4-H (a)], 5.88 [1 H, ddd, J 17.2, 10.4 and 6.8 Hz, 4-H (b)], 5.38 [2 H, d, J 9.1 Hz, 11-H (a and b)], 5.22 [1 H, d, J 17.2 Hz, $4=CH_2$ (a)], 5.19 [1 H, d, J 17.2 Hz, $4=CH_2$ (b)], 5.03-5.08 [3 H, m, $4=CH_2$ (a) and 25-H (a and b)], 5.01 [1 H, d, J 10.4 Hz, 4=CH₂ (b)], 4.74–4.77 [2 H, m, 7-H (a and b)], 4.57 [2 H, d, J 11.2 Hz, OCH₂Ar (a and b)], 4.49 [2 H, d, J 11.2 Hz, OCH_2Ar (a and b)], 4.46 [1 H, t, J 6.8 Hz, 3-H (a)], 4.42 [1 H, t, J 6.8 Hz, 3-H (b)], 4.35 [2 H, d, J 8.7 Hz, 14-H (a and b)], 3.97–4.02 [2 H, m, 19-H (a and b)], 3.86–3.89 [5 H, m, 16-H (a and b), 21-H (a and b) and 24-H (b)], 3.83-3.85 [1 H, m, 24-H (a)], 3.72-3.75 [2 H, m, 9-H (a and b)], 3.39 [6 H, s, ArOCH₃ (a and b)], 3.32 [3 H, s, OC H_3 (a)], 3.31 [3 H, s, OC H_3 (b)], 2.83–2.87 [2 H, m, 10-H (a and b)], 2.72 [2 H, d, J 13.9 Hz, 13-H (a and b)], 2.57 [2 H, qd, J 7.0, 6.8 Hz, 2-H (a and b)], 2.38–2.42 [2 H, m, 13-H (a and b)], 2.12-2.17 [6 H, m, 5-H (a and b), 8-H (a and b) and 17-H (a and b)], 1.98–2.05 [4 H, m, 8-H (a and b) and 20-H (a and b)], 1.75 [6 H, s, 12-CH₃ (a and b)], 1.70 [10 H, m, 17-H (a and b), 18-H (a and b), 20-H (a and b), 23-H (a and b) and 26-H (a and b)], 1.50–1.69 [8 H, m, 22-H (a and b), 22-H (a and b), 23-H (a and b) and 26-H (a and b)], 1.30–1.49 [10 H, m, 18-H (a and b), 27-H (a and b), 27-H (a and b), 28-H (a and b) and 28-H (a and b)], 1.29 [3 H, d, J 7.0 Hz, 2-CH₃ (a)], 1.28 [3 H, d, J 7.0 Hz, 2-CH₃ (b)], $1.17 [6 \text{ H}, d, J 6.8 \text{ Hz}, 10\text{-C}H_3 (a \text{ and b})], 1.03 [18 \text{ H}, s, SiC(C}H_3)_3$ and SiC(C H_3)₃], 1.01 [18 H, s, SiC(C H_3)₃ and SiC(C H_3)₃], 1.01 [9 H, s, SiC(C H_3)₃], 1.00 [18 H, s, SiC(C H_3)₃ and SiC(C H_3)₃], 0.98 [9 H, s, SiC(C H_3)₃], 0.97 [18 H, s, SiC(C H_3)₃ and SiC(C H_3)₃], 0.96 [9 H, s, SiC(C H_3)₃], 0.96 [9 H, s, SiC(C H_3)₃], 0.90 [3 H, t, J 7.1 Hz, $28-CH_3$ (b)], 0.88 [3 H, t, J7.0 Hz, $28-CH_3$ (a)], 0.28 (6 H, s, $SiCH_3$ and SiC H_3), 0.25 (6 H, s, SiC H_3 and SiC H_3), 0.23 (3 H, s, SiC H_3), 0.21 (3 H, s, SiC H_3), 0.19 (6 H, s, SiC H_3 and SiC H_3), 0.18 (3 H, s, $SiCH_3$), 0.18 (6 H, s, $SiCH_3$ and $SiCH_3$), 0.17 (3 H, s, $SiCH_3$), 0.16 $(3 \text{ H}, \text{ s}, \text{SiC}H_3), 0.15 (3 \text{ H}, \text{ s}, \text{SiC}H_3), 0.14 (12 \text{ H}, \text{ s}, \text{SiC}H_3, \text{SiC}H_3)$ $SiCH_3$ and $SiCH_3$), 0.11 (3 H, s, $SiCH_3$), 0.10 (9 H, s, $SiCH_3$, $SiCH_3$ and $SiCH_3$), 0.08 (3 H, s, $SiCH_3$), 0.06 (3 H, s, $SiCH_3$); δ_C (150 MHz, C₆D₆, 343 K) 173.6, 173.5, 159.8, 140.4, 140.2, 134.1, 134.1, 131.9, 129.9, 129.8, 129.4, 129.3, 115.7, 114.2, 100.4, 86.2, 80.1, 76.7, 76.0, 75.8, 75.7, 73.4, 73.0, 72.9, 72.3, 71.9, 69.8, 69.4, 68.9, 68.9, 67.9, 61.9, 61.8, 54.9, 47.6, 44.5, 44.2, 43.3, 41.2, 36.0, 34.5, 34.5, 31.8, 30.6, 28.7, 28.6, 28.4, 27.9, 27.7, 26.7, 26.6, 26.4, 26.2, 26.1, 26.1, 25.4, 24.1, 23.1, 22.8, 19.1, 18.5, 18.4, 18.4, 18.3, 16.5, 16.1, 14.1, 14.0, 13.5, 13.2, -2.5, -3.5, -3.6, -3.7, -3.9,-4.0, -4.1, -4.2, -4.3, -4.5, -4.6; HRMS (ES+) m/z calc. for C₇₈H₁₅₀O₁₂Si₆Na ([MNa]⁺): 1469.9635, found 1469.9624.

Diene 96

Alkyne 94 (130 mg, 90 μ mol) and Grubbs second-generation catalyst 88 (3.8 mg, 4.5 μ mol) were dissolved in CH₂Cl₂ (7 mL) in a

microwave reactor tube $(9.0 \times 1.5 \text{ cm})$ equipped with a stirrer bar at room temperature. The solution was purged with ethylene (from a balloon) for 5 min, then sealed and microwaved $(2 \times 20 \text{ min}, 100 \text{ W})$ microwave power, 55 °C maximum temperature). After cooling to room temperature, the reactor tube was opened, another portion of catalyst 88 (3.8 mg, 4.5 µmol) was added, the mixture was purged with ethylene for 5 min, then the tube was sealed and microwaved again (1 × 50 min, 100 W microwave power, 55 °C maximum temperature). After cooling to room temperature, the reactor tube was opened and the mixture concentrated. The residue was purified by flash chromatography on silica gel (gradient: 2–2.5% Et₂O in hexanes) to give **96** (80 mg, 60%) as a colourless oil. ¹H-NMR, ¹³C-NMR and HSQC analysis revealed the product to be a 1.4:1 mixture of anomers at the C-15 position. $R_f = 0.41$ (23: 2 hexanes–Et₂O); $[a]_D^{25}$ –10.5° (c 1.22 in CH₂Cl₂); v_{max} /cm⁻¹ (film) 2956, 2860, 1732, 1615, 1514, 1471, 1250, 1123, 837; $\delta_{\rm H}$ (600 MHz, C_6D_6 , 343 K) 7.30 [4 H, d, J 8.4 Hz, ArH (anomers a and b)], 6.84 [4 H, d, J 8.4 H, ArH (a and b)], 6.36 [2 H, dd, J 17.7, 11.2 Hz, 5-H (a and b)], 5.94 [1 H, ddd, J 17.3, 10.5 and 6.9 Hz, 4-H (a)], 5.90 [1 H, ddd, J 17.2, 10.3 and 6.7 Hz, 4-H (b)], 5.55 [2 H, d, J 17.7 Hz, 5=CH₂ (a and b)], 5.45 [2 H, d, J 9.1 Hz, 11-H (a and b)], 5.23 [1 H, d, J 17.3 Hz, 4=CH₂ (a)], 5.20 [1 H, d, J 17.2 Hz, $4=CH_2$ (b)], 5.02–5.11 [10 H, m, $4=CH_2$ (a and b), $5=CH_2$ (a and b), $6=CH_2$ (a and b), $6=CH_2$ (a and b) and 25-H (a and b)], 4.61-4.65 [2 H, m, 7-H (a and b)], 4.55 [2 H, d, J 11.3 Hz, OC H_2 Ar (a and b)], 4.42 [4 H, m, 3-H (a and b) and OCH_2Ar (a and b)], 4.35 [2 H, d, J 8.7 Hz, 14-H (a and b)], 3.98–4.02 [2 H, m, 19-H (a and b)], 3.88–3.93 [5 H, m, 16-H (a and b), 21-H (a and b) and 24-H (b)], 3.86-3.88 [1 H, m, 24-H (a)], 3.50-3.53 [2 H, m, 9-H (a and b)], 3.40 [6 H, s, ArOC H_3 (a and b)], 3.33 [3 H, s, OC H_3 (a)], 3.32 [3 H, s, OC H_3 (b)], 2.89–2.94 [2 H, m, 10-H (a and b)], 2.71 [2 H, d, J 14.0 Hz, 13-H (a and b)], 2.58–2.63 [2 H, m, 2-H (a and b)], 2.43–2.47 [2 H, m, 13-H (a and b)], 1.99–2.19 [9 H, m, 8-H (a and b), 8-H (a and b), 17-H (a), 20-H (a and b) and 26-H (a and b)], 1.79 [6 H, s, 12-CH₃ (a and b)], 1.74–1.90 [9 H, m, 17-H (b), 18-H (a and b), 20-H (a and b), 22-H (a and b), 26-H (a and b)], 1.49–1.69 [8 H, m, 17-H (a and b), 22-H (a and b), 23-H (a and b) and 23-H (a and b)], 1.31-1.48 [10 H, m, 18-H (a and b), 27-H (a and b), 27-H (a and b), 28-H (a and b) and 28-H (a and b)], 1.31 [3 H, d, J 6.8 Hz, 2-CH₃ (b)], 1.30 [3 H, d, J 6.9 Hz, 2-CH₃ (a)], 1.23 [6 H, d, J 6.9 Hz, 10-C H_3 (a and b)], 1.06 [18 H, s, SiC(C H_3)₃ and SiC(C H_3)₃], 1.03 [18 H, s, SiC(C H_3)₃ and SiC(C H_3)₃], 1.03 [9 H, s, $SiC(CH_3)_3$], 1.02 [18 H, s, $SiC(CH_3)_3$ and $SiC(CH_3)_3$], 1.00 [18 H, s, SiC(C H_3)₃ and SiC(C H_3)₃], 0.99 [9 H, s, SiC(C H_3)₃], 0.98 [9 H, s, SiC(C H_3)₃], 0.97 [9 H, s, SiC(C H_3)₃], 0.92 [3 H, t, J 7.2 Hz, 28-CH₃ (b)], 0.90 [3 H, t, J 6.9 Hz, 28-CH₃ (a)], 0.31 (6 H, s, $SiCH_3$ and $SiCH_3$), 0.28 (6 H, s, $SiCH_3$ and $SiCH_3$), 0.25 (3 H, s, $SiCH_3$), 0.23 (3 H, s, $SiCH_3$), 0.21 (6 H, s, $SiCH_3$ and $SiCH_3$), 0.20 (3 H, s, SiC H_3), 0.19 (3 H, s, SiC H_3), 0.18 (3 H, s, SiC H_3), 0.17 (3 H, s, SiC H_3), 0.16 (3 H, s, SiC H_3), 0.16 (6 H, s, SiC H_3) and $SiCH_3$), 0.14 (6 H, s, $SiCH_3$ and $SiCH_3$), 0.13 (3 H, s, $SiCH_3$), 0.12 (3 H, s, SiC H_3), 0.11 (6 H, s, SiC H_3 and SiC H_3), 0.10 (3 H, s, $SiCH_3$), 0.09 (3 H, s, $SiCH_3$), 0.08 (3 H, s, $SiCH_3$); δ_C (150 MHz, C₆D₆, 343 K) 173.7, 173.6, 159.8, 150.1, 140.4, 140.2, 136.0, 133.7, 132.2, 130.3, 129.2, 129.0, 115.7, 115.1, 114.2, 114.0, 100.4, 80.0, 76.7, 76.1, 75.9, 75.7, 73.4, 73.0, 71.8, 71.3, 69.9, 69.5, 69.0, 69.0, 67.9, 54.9, 47.7, 44.4, 43.2, 39.8, 35.5, 34.6, 34.5, 31.8, 30.5, 30.1, 28.7, 28.7, 28.4, 27.9, 27.8, 26.7, 26.5, 26.2, 26.1, 25.4, 23.1, 22.9, 19.1, 18.6, 18.4, 18.3, 16.4, 16.2, 14.1, 14.0, 13.5, 13.3, -2.5, -3.5,

-3.6, -3.8, -3.8, -3.9, -4.0, -4.1, -4.2, -4.3, -4.3, -4.5, -4.6; HRMS (ES⁺) m/z calc. for $C_{80}H_{154}O_{12}Si_6Na$ ([MNa]⁺): 1497.9948, found 1497.9950.

Alcohol 98

To a vigorously stirred solution of alkyne 94 (200 mg, 0.138 mmol) in CH₂Cl₂ (7 mL) and aqueous pH 7 buffer (3.5 mL) was added DDQ (53.3 mg, 0.234 mmol) in one portion at 0 °C. After 40 min at this temperature, the mixture was partitioned between CH₂Cl₂ (30 mL) and sat. aq. NaHCO₃ (30 mL). The layers were separated, and the aqueous layer was extracted with CH_2Cl_2 (2 × 20 mL). The combined organic layers were washed with brine $(1 \times 20 \text{ mL})$, dried (MgSO₄), filtered and concentrated in vacuo. The residue was purified by flash chromatography on silica gel (gradient: 2– 3% Et₂O in hexanes) to give 98 (159 mg, 89%) as a colourless oil. ¹H-NMR, ¹³C-NMR and HSQC analysis revealed the product to be a 1.4:1 mixture of anomers at the C-15 position. $R_f = 0.19$ (25: 2 hexanes-Et₂O); $[a]_D^{25} + 3.1^{\circ} (c \ 0.98 \text{ in } CH_2Cl_2); \nu_{max}/cm^{-1} (film)$ 3501, 2957, 2857, 2280, 1730, 1617, 1462, 1255, 1123, 836, 776, 740; $\delta_{\rm H}$ (500 MHz, C₆D₆, 343 K) 5.91 [1 H, ddd, J 17.3, 10.4 and 6.8 Hz, 4-H (anomer a)], 5.88 [1 H, ddd, J 17.5, 10.4 and 6.8 Hz, 4-H (anomer b)], 5.25 [2 H, d, J 9.6 Hz, 11-H (a and b)], 5.21 [1 H, d, J 17.3 Hz, $4=CH_2$ (a)], 5.18 [1 H, d, J 17.5 Hz, $4=CH_2$ (b)], 5.00–5.06 [4 H, m, 25-H (a and b) and $4=CH_2$ (a and b)], 4.79–4.82 [2 H, m, 7-H (a and b)], 4.45 [1 H, t, J 6.8 Hz, 3-H (a)], 4.41 [1 H, t, J 6.8 Hz, 3-H (b)], 4.30–4.35 [2 H, m, 14-H (a and b)], 3.94–3.99 [2 H, m, 19-H (a and b)], 3.81–3.88 [6 H, m, 16-H (a and b), 21-H (a and b) and 24-H (a and b)], 3.77-3.80 [2 H, m, 9-H (a and b)], 3.30 [3 H, s, OCH₃ (b)], 3.30 [3 H, s, OCH₃ (a)], 2.77 [2 H, d, J 14.0 Hz, 13-H (a and b)], 2.55 [2 H, qd J 6.9, 6.8 Hz, 2-H (a and b)], 2.39–2.44 [2 H, m, 10-H (a and b)], 2.35 [2 H, dd, J 14.0, 8.6 Hz, 13-H (a and b)], 2.09–2.16 [4 H, m, 5-H (a and b) and 17-H (a and b)], 1.95–2.04 [4 H, m, 8-H (a and b) and 20-H (a and b)], $1.70 [3 \text{ H}, \text{ s}, 12\text{-C}H_3 (\text{b})], 1.70 [3 \text{ H}, \text{ s}, 12\text{-C}H_3 (\text{a})], 1.70\text{--}1.85 [10 \text{ H}, \text{s}]$ m, 8-H (a and b), 17-H (a and b), 18-H (a and b), 20-H (a and b) and 23-H (a and b)], 1.45–1.67 [10 H, 22-H (a and b), 22-H (a and b), 23-H (a and b), 26-H (a and b) and 26-H (a and b)], 1.32–1.43 [10 H, m, 18-H (a and b), 27-H (a and b), 27-H (a and b), 28-H (a and b) and 28-H (a and b)], 1.28 [3 H, d, J 6.9 Hz, 2-CH₃ (b)], 1.27 [3 H, d, J 6.9 Hz, 2-CH₃ (a)], 1.03 [6 H, d, J 6.7 Hz, 10-CH₃ (a and b)], 1.01 [18 H, s, $SiC(CH_3)_3$ and $SiC(CH_3)_3$], 1.00 [18 H, s, $SiC(CH_3)_3$ and $SiC(CH_3)_3$, 0.99 [9 H, s, $SiC(CH_3)_3$], 0.99 [9 H, s, $SiC(CH_3)_3$], 0.99 [9 H, s, $SiC(CH_3)_3$], 0.98 [9 H, s, $SiC(CH_3)_3$], $0.98 [18 \text{ H}, \text{ s}, \text{SiC}(\text{C}H_3)_3]$ and $\text{SiC}(\text{C}H_3)_3]$, $0.96 [9 \text{ H}, \text{ s}, \text{SiC}(\text{C}H_3)_3]$, 0.95 [9 H, s, SiC(C H_3)₃], 0.90 [3 H, t, J 7.1 Hz, 28-C H_3 (b)], 0.88[3 H, t, J 7.1 Hz, 28-C H_3 (a)], 0.25 (6 H, s, SiC H_3 and SiC H_3), $0.22 (6 \text{ H}, \text{ s}, \text{SiC}H_3 \text{ and SiC}H_3), 0.22 (9 \text{ H}, \text{ s}, \text{SiC}H_3, \text{SiC}H_3 \text{ and})$ $SiCH_3$), 0.20 (6 H, s, $SiCH_3$ and $SiCH_3$), 0.18 (3 H, s, $SiCH_3$), 0.17 (3 H, s, SiC H_3), 0.17 (3 H, s, SiC H_3), 0.16 (6 H, s, SiC H_3) and $SiCH_3$), 0.16 (3 H, s, $SiCH_3$), 0.15 (6 H, s, $SiCH_3$ and $SiCH_3$), $0.13 (6 \text{ H}, \text{ s}, \text{SiC}H_3 \text{ and SiC}H_3), 0.11 (9 \text{ H}, \text{ s}, \text{SiC}H_3, \text{SiC}H_3 \text{ and})$ $SiCH_3$), 0.07 (3 H, s, $SiCH_3$), 0.06 (3 H, s, $SiCH_3$); δ_C (125 MHz, C₆D₆, 343 K) 173.8, 173.6, 140.5, 140.3, 135.6, 129.7, 115.7, 100.5, 86.4, 86.3, 76.8, 76.1, 75.9, 75.7, 73.5, 73.1, 72.5, 72.5, 72.0, 71.6, 69.9, 69.6, 69.1, 68.9, 67.9, 61.0, 47.8, 47.7, 44.5, 43.8, 43.7, 39.6, 39.5, 34.6, 31.9, 30.6, 28.8, 28.7, 28.5, 28.0, 27.8, 26.7, 26.7, 26.6, 26.5, 26.3, 26.2, 26.1, 25.4, 24.4, 23.2, 22.9, 19.1, 18.6, 18.5, 18.4, 18.4, 18.3, 16.9, 16.9, 16.8, 14.1, 14.0, 13.6, 13.3, -2.6, -2.6, -3.5,

-3.5, -3.6, -3.8, -3.8, -3.9, -4.0, -4.1, -4.2, -4.3, -4.4, -4.8; HRMS (ES⁺) m/z calc. for $C_{70}H_{142}O_{11}Si_6Na$ ([MNa]⁺): 1349.9059, found 1349.9083.

Ketone 99

To a stirred suspension of alcohol 98 (140 mg, 0.105 mmol) and powdered, activated 4 Å molecular sieves (ca. 100 mg) in CH₂Cl₂ (6 mL) was added NMO (62 mg, 0.527 mmol) in one portion at room temperature. After 10 min, TPAP (37 mg, 0.105 mmol) was added in one portion, and stirring was continued for another 1.5 h, before the mixture was diluted with Et₂O (20 mL) and filtered through a pad of Celite®, washing thoroughly with Et₂O. The filtrate was washed with 5% aq. Na₂SO₃ (1 × 25 mL) and brine $(1 \times 25 \text{ mL})$. The combined aqueous layers were extracted with Et_2O (1 × 40 mL), and the combined organic layers were dried (MgSO₄), filtered and concentrated in vacuo. The residue was purified by flash chromatography on silica gel (gradient: 1–2% Et₂O in hexanes) to give 99 (106 mg, 76%) as a colourless oil. ¹H-NMR, ¹³C-NMR and HSQC analysis revealed the product to be a 1.4 : 1 mixture of anomers at the C-15 position. $R_{\rm f} = 0.48$ (25 : 2 hexanes–Et₂O); $[a]_D^{25}$ +33.1° (c 1.01 in CH₂Cl₂); v_{max} /cm⁻¹ (film) 2955, 2865, 2281, 1731, 1722, 1618, 1472, 1257, 1123, 834, 776; $\delta_{\rm H}$ (500 MHz, C₆D₆, 343 K) 5.94 [1 H, ddd, J 17.2, 10.4 and 6.8 Hz, 4-H (anomer a)], 5.90 [1 H, ddd, J 17.2, 10.4 and 6.8 Hz, 4-H (anomer b)], 5.18–5.25 [4 H, m, 11-H (a and b) and $4=CH_2$ (a and b)], 5.01-5.11 [6 H, m, 7-H (a and b), 25-H (a and b) and $4=CH_2$ (a and b)], 4.48 [1 H, t, J 6.8 Hz, 3-H (a)], 4.43 [1 H, t, J 6.8 Hz, 3-H (b)], 4.37 [2 H, app d, J 9.2 Hz, 14-H (a and b)], 3.98–4.03 [2 H, m, 19-H (a and b)], 3.84–3.90 [6 H, m, 16-H (a and b), 21-H (a and b) and 24-H (a and b)], 3.33 [3 H, s, OCH_3 (a)], $3.32 [3 \text{ H}, \text{ s}, \text{OC}H_3 \text{ (b)}], 3.31-3.34 [2 \text{ H}, \text{ m}, 10\text{-H}) \text{ (a and b)}], 2.99$ [1 H, dd, J 16.2, 8.7 Hz, 8-H (b)], 2.98 [1 H, dd, J 16.2, 8.7 Hz, 8-H (a)], 2.73–2.76 [2 H, m, 13-H (a and b)], 2.65–2.70 [2 H, m, 8-H (a and b)], 2.59 [2 H, qd, J 7.0, 6.8 Hz, 2-H (a and b)], 2.36 [2 H, dd, J 14.2, 9.2 Hz, 13-H (a and b)], 2.11–2.19 [2 H, m, 17-H (a and b)], 2.08–2.09 [2 H, m, 5-H (a and b)], 1.99–2.07 [2 H, m, 20-H (a and b)], 1.73 [6 H, s, 12-CH₃ (a and b)], 1.71–1.89 [8 H, m, 18-H (a and b), 20-H (a and b), 23-H (a and b) and 26-H (a and b)], 1.45–1.69 [10 H, m, 17-H (a and b), 22-H (a and b), 22-H (a and b), 23-H (a and b) and 26-H (a and b)], 1.32-1.44 [10 H, m, 18-H (a and b), 27-H (a and b), 27-H (a and b), 28-H (a and b) and 28-H (a and b)], 1.31 [3 H, d, J 7.0 Hz, 2-CH₃ (b)], 1.30 [3 H, d, J 7.0 Hz, $2-CH_3$ (a)], 1.22 [6 H, d, J 6.7 Hz, 10-C H_3 (a and b)], 1.02 [9 H, s, $SiC(CH_3)_3$, 1.02 [9 H, s, $SiC(CH_3)_3$], 1.01 [18 H, s, $SiC(CH_3)_3$ and $SiC(CH_3)_3$, 1.01 [9 H, s, $SiC(CH_3)_3$], 1.01 [9 H, s, $SiC(CH_3)_3$], 1.00 [18 H, s, $SiC(CH_3)_3$ and $SiC(CH_3)_3$], 0.98 [18 H, s, $SiC(CH_3)_3$ and $SiC(CH_3)_3$, 0.98 [9 H, s, $SiC(CH_3)_3$], 0.97 [9 H, s, $SiC(CH_3)_3$], 0.91 [3 H, t, J 7.1 Hz, 28-CH₃ (b)], 0.89 [3 H, t, J 7.1 Hz, 28-CH₃ (a)], 0.26 (6 H, s, SiC H_3 and SiC H_3), 0.24 (3 H, s, SiC H_3), 0.23 (6 H, s, $SiCH_3$ and $SiCH_3$), 0.22 (3 H, s, $SiCH_3$), 0.21 (3 H, s, $SiCH_3$), $0.19 (6 \text{ H}, \text{ s}, \text{SiC}H_3 \text{ and SiC}H_3), 0.18 (3 \text{ H}, \text{ s}, \text{SiC}H_3), 0.18 (6 \text{ H}, \text{ s},$ $SiCH_3$ and $SiCH_3$), 0.17 (9 H, s, $SiCH_3$, $SiCH_3$ and $SiCH_3$), 0.16 $(3 \text{ H}, \text{ s}, \text{SiC}H_3), 0.15 (3 \text{ H}, \text{ s}, \text{SiC}H_3), 0.15 (3 \text{ H}, \text{ s}, \text{SiC}H_3), 0.12 (3 \text{ H}, \text{s}, \text{SiC}H_3), 0.12 (3 \text{ H}, \text{s}, \text{SiC}H_3), 0.12 (3 \text{ H}, \text{s}, \text{SiC}H_3), 0.12 (3 \text{ H$ H, s, $SiCH_3$), 0.11 (3 H, s, $SiCH_3$), 0.10 (6 H, s, $SiCH_3$ and $SiCH_3$), 0.09 (3 H, s, SiC H_3), 0.07 (3 H, s, SiC H_3); δ_C (125 MHz, C_6D_6 , 343 K) 206.2, 173.7, 173.6, 140.5, 140.3, 137.2, 137.2, 126.6, 115.8, 100.4, 85.7, 76.8, 76.1, 75.9, 75.8, 73.6, 73.1, 72.6, 71.9, 70.0, 69.6, 69.1, 69.0, 67.9, 59.7, 49.7, 49.1, 49.0, 47.8, 47.8, 44.6, 43.2, 34.6, 34.6, 32.0, 30.6, 28.8, 28.7, 28.6, 28.1, 27.7, 26.6, 26.5, 26.3, 26.2, 26.1, 26.1, 25.5, 23.2, 22.9, 19.1, 18.6, 18.5, 18.4, 18.4, 16.8, 16.1, 14.1, 14.0, 13.6, 13.3, -2.5, -3.4, -3.7, -3.7, -3.7, -3.8, -3.9, -4.0, -4.0, -4.1, -4.2, -4.4, -4.8; HRMS (ES+) m/z calc. for $C_{70}H_{140}O_{11}Si_6Na$ ([MNa]+): 1347.8903, found 1347.8931.

Alkynes 100 and 101

To a stirred solution of alkyne 99 (95 mg, 71.6 µmol) in 8 : 1 MeCN-CH₂Cl₂ (15 mL) was added 48% aq. HF (1.4 mL) dropwise at 0 °C. The mixture was allowed to warm to room temperature and stirred for 4 h, before being poured carefully into ice-cold sat. aq. NaHCO₃ (30 mL). The mixture was diluted with EtOAc (30 mL), then solid NaHCO₃ was cautiously added with vigorous stirring until the pH of the mixture was 8. The layers were then separated, and the aqueous layer was extracted with EtOAc (5 \times 20 mL). The combined organic layers were dried (MgSO₄), filtered and concentrated in vacuo. The residue was purified by flash chromatography on silica gel (gradient: 20% hexanes in EtOAc-EtOAc) to give an inseparable 1 : 1 mixture (determined by ¹H-NMR) of bicyclic acetal 100 and hemiacetal 101 (29.6 mg, 66%) as a colourless oil. $R_f = 0.22$ (EtOAc); $[a]_D^{25} + 81.3^{\circ}$ (c 1.38 in CH₂Cl₂); $v_{\text{max}}/\text{cm}^{-1}$ (film) 3414, 2956, 2872, 2280, 1734, 1720, 1619, 1454, 1076, 813. HRMS (ES⁺) m/z calc. for $C_{33}H_{53}O_{10}$ ([M - OH]⁺): 609.3639, found 609.3633.

Data for acetal 100. $\delta_{\rm H}$ (600 MHz, C₆D₆, 341 K) 5.84–5.90 (1 H, m, 4-H), 5.29-5.33 (1 H, m, $4=CH_2$), 5.20-5.23 (1 H, m, 11-H), 5.06-5.11 (2 H, m, 25-H and $4=CH_2$), 4.78-4.81 (1 H, m, 7-H), 4.54–4.56 (1 H, m, 3-H), 4.02 (1 H, dd, J 10.5, 2.3 Hz, 14-H), 3.87– 3.94 (1 H, m, 19-H), 3.81-3.84 (1 H, m, 16-H), 3.70-3.74 (1 H, m, 21-H), 3.57–3.63 (1 H, m, 24-H), 3.21–3.26 (1 H, m, 10-H), 2.72– 2.75 (2 H, m, 8-H and 8-H), 2.63–2.66 (1 H, m, 2-H), 2.51 (1 H, app d, J 14.3 Hz, 13-H), 2.25–2.29 (1 H, m, 13-H), 2.20 (1 H, s, 5-H), 1.80–1.91 (1 H, m, 17-H), 1.73 (3 H, s, 12-CH₃), 1.48–1.71 (8 H, m, 17-H, 18-H, 20-H, 22-H, 23-H, 23-H, 26-H and 26-H), 1.27–1.42 (5 H, m, 22-H. 27-H, 27-H, 28-H and 28-H), 1.18 (3 H, d, J 7.1 Hz, 2-CH₃), 1.09–1.12 (1 H, m, 20-H), 1.08 (3 H, d, J 6.9 Hz, 10-CH₃), 1.02–1.06 (1 H, m, 18-H), 0.88 (3 H, t, J 7.1 Hz, 28-C H_3); δ_C (150 MHz, C_6D_6 , 341 K) 209.2 (C-9), 174.5 (C-1), 138.6 (C-4), 137.2 (C-12), 125.9 (C-11), 115.9 (4=*C*H₂), 98.3 (C-15), 85.0 (C-6), 76.7 (C-25), 73.8 (C-3), 73.8 (C-14), 73.0 (C-24), 72.7 (C-5), 68.5 (C-16), 67.0 (C-21), 66.3 (C-19), 58.8 (C-7), 47.8 (C-8), 47.4 (C-10), 45.4 (C-2), 41.0 (C-13), 35.2 (C-20), 31.5 (C-23), 30.8 (C-26), 30.2 (C-18), 29.9 (C-22), 28.1 (C-27), 24.0 (C-17), 22.9 (C-28), 17.4 (12-CH₃), 16.1 (10-CH₃), 14.1 (28-CH₃), 11.0 $(2-CH_3).$

Data for hemiacetal 101. $\delta_{\rm H}$ (600 MHz, C₆D₆, 341 K) 5.78–5.85 (1 H, m, 4-H), 5.28–5.32 (1 H, m, 4=C H_2), 5.20–5.23 (2 H, m, 11-H and 25-H), 5.06–5.11 (1 H, m, 4=C H_2), 4.78–4.81 (1 H, m, 7-H), 4.47–4.49 (1 H, m, 3-H), 3.98 (1 H, dd, J 10.3, 2.3 Hz, 14-H), 3.87–3.94 (1 H, m, 19-H), 3.81–3.84 (1 H, m, 16-H), 3.74–3.77 (1 H, m, 21-H), 3.57–3.63 (1 H, m, 24-H), 3.21–3.26 (1 H, m, 10-H), 2.72–2.75 (2 H, m, 8-H and 8-H), 2.58–2.61 (1 H, m, 2-H), 2.51 (1 H, app d, J 14.3 Hz, 13-H), 2.24–2.28 (1 H, m, 13-H), 2.20 (1 H, s, 5-H), 1.80–1.91 (2 H, m, 17-H and 26-H), 1.73 (3 H, s, 12-C H_3), 1.48–1.71 (9 H, m, 17-H, 18-H, 20-H, 22-H, 23-H, 23-H, 26-H and 27-H), 1.27–1.42 (3 H, m, 27-H, 28-H and 28-H), 1.20 (3 H, d, J 7.1 Hz, 2-C H_3), 1.09–1.12 (1 H, m, 20-

H), 1.08 (3 H, d, *J* 6.9 Hz, 10-C H_3), 1.02–1.06 (1 H, m, 18-H), 0.92 (3 H, t, *J* 7.2 Hz, 28-C H_3); $\delta_{\rm C}$ (150 MHz, C₆D₆, 341 K) 209.2 (C-9), 174.8 (C-1), 138.6 (C-4), 137.2 (C-12), 125.9 (C-11), 115.8 (4 = CH₂), 98.5 (C-15), 85.1 (C-6), 77.1 (C-25), 73.5 (C-14), 73.4 (C-3), 72.8 (C-24), 72.8 (C-5), 68.5 (C-16), 66.6 (C-21), 66.3 (C-19), 58.8 (C-7), 47.8 (C-8), 47.4 (C-10), 45.8 (C-2), 41.0 (C-13), 35.0 (C-20), 33.3 (C-23), 30.8 (C-22), 30.1 (C-18), 28.3 (C-27), 27.4 (C-26), 24.0 (C-17), 23.0 (C-28), 17.4 (12-CH₃), 16.1 (10-CH₃), 14.1 (28-CH₃), 11.3 (2-CH₃).

2-Bromoacrolein 106 42

Br₂ (25.6 mL, 500 mmol) was added dropwise to a stirred solution of acrolein (33.4 mL, 500 mL) in CH_2Cl_2 (750 mL) at -78 °C over 10 min. After an additional 30 min at −78 °C, Et₃N (69.4 mL, 500 mmol) was added and the mixture was warmed to room temperature over 2 h. The reaction was then quenched by the addition of H₂O (600 mL), the layers were separated, and the aqueous layer was extracted with CH2Cl2 (1 × 500 mL). The combined aqueous layers were washed with a 9:1 mixture of brine and 1 M HCl (500 mL), dried (MgSO₄), filtered and concentrated at room temperature and 300 torr. The residue was purified by vacuum distillation (bp 77–81 °C, 120 torr) to give 2-bromoacrolein 106 (46.05 g, 68%) as a light yellow oil, the spectroscopic data of which were in agreement with those reported in the literature. 42 $\delta_{\rm H}$ (400 MHz, CDCl₃) 9.22 (1 H, s, 1-H), 6.88 (1 H, d, J 2.3 Hz, 3-H), 6.87 (1 H, d, J 2.3 Hz, 3-H). This material can be kept for several days when stored at 0 °C under an inert atmosphere, but for optimum results is best used directly following its preparation.

Oxazolidinone 107

A stirred solution of oxazolidinone 105 (23.08 g, 91 mmol) in CH_2Cl_2 (225 mL) was cooled to -78 °C, where n-Bu₂BOTf (100 mL, 1.0 M in CH₂Cl₂, 100 mmol) was added dropwise over 20 min, followed by the addition of freshly distilled i-Pr₂NEt (20.1 mL, 113 mmol). After stirring for 30 min at -78 °C, the solution was warmed to room temperature for 90 min, then recooled to -78 °C, where freshly prepared 2-bromoacrolein 106 (37.11 g, 275 mmol) was added dropwise. The solution was stirred at -78 °C for 5 h, then was allowed to warm to room temperature overnight. The solution was then cooled to 0 °C, and quenched by the addition of aqueous pH 7.0 buffer (250 mL) and MeOH (250 mL), followed by the slow dropwise addition of 35% aq. H₂O₂ (400 mL). After 1 h at 0 °C, the solution was extracted with CH₂Cl₂ (3 × 250 mL), and the combined organic layers were washed with sat. aq. NaHCO₃ (1 \times 250 mL), brine (1 \times 250 mL), dried (MgSO₄), filtered and concentrated in vacuo. The solid residue was purified by flash chromatography on silica gel (gradient: 35–75% Et_2O in hexanes) to give 107 (28.90 g, 82%) as white needles. $R_f =$ 0.18 (silica gel, 1 : 1 hexanes–Et₂O); mp 105–106 °C; $[a]_D^{25}$ +35.9° (c 1.73 in CHCl₃); $v_{\text{max}}/\text{cm}^{-1}$ (film) 3478, 3063, 2922, 1789, 1713, 1497, 1479, 1210, 1113, 995; $\delta_{\rm H}$ (500 MHz, CDCl₃) 7.33–7.36 (2 H, m, ArH), 7.27–7.30 (1 H, m, ArH), 7.21–7.23 (2 H, m, ArH), 6.18 (1 H, dd, J 1.9, 1.4 Hz, 6=CH₂), 6.06 (1 H, d, J 4.1 Hz, 8-H), 5.78 (1 H, dd, J 1.9, 0.8 Hz, 6=C H_2), 4.76–4.78 (1 H, m, 7-H), 4.69–4.73 (1 H, m, OCH₂CHN), 4.28 (1 H, dd, J 9.2, 7.7 Hz, OCH₂CHN), 4.24 (1 H, dd, J 9.2, 3.1 Hz, OCH₂CHN), 3.44 (1 H, d, J 5.6 Hz, OH), 3.28 (1 H, dd, J 13.6, 3.4 Hz, C H_2 Ph), 2.85 (1 H, dd, J 13.6, 9.3 Hz, C H_2 Ph); $\delta_{\rm C}$ (125 MHz, CDCl₃) 167.7, 152.2, 134.4, 129.4, 129.0, 128.5, 127.5, 120.9, 74.7, 66.5, 56.5, 55.3, 37.0; HRMS (ES⁺) m/z calc. for C₁₅H₁₆⁷⁹Br³⁵ClNO₄ ([MH]⁺): 387.9946, found: 387.9938.

Oxazolidinone 108

Oxazolidinone 107 (28.90 g, 74.4 mmol), Zn dust (19.62 g, 300 mmol) and solid NH₄Cl (16.17 g, 300 mmol) were combined in MeOH (400 mL) and stirred vigorously at room temperature for 6 h. Et₂O (500 mL) was then added to the mixture, which was then filtered through a bed of Celite®, washing with Et₂O (2 × 100 mL), and the filtrate was concentrated under reduced pressure. The residue was then taken up in Et₂O (200 mL), filtered, and the filtrate was concentrated in vacuo. The residue was purified by flash chromatography on silica gel (25% EtOAc in hexanes) to give **108** (21.42 g, 81%) as colourless needles. $R_{\rm f} = 0.18$ (silica gel, 1 : 1 hexanes–Et₂O); $[a]_D^{25}$ +30.0° (c 1.73 in CHCl₃); v_{max} /cm⁻¹ (film) 3481, 3063, 2921, 1780, 1700, 1498, 1478, 1289, 1072, 991; $\delta_{\rm H}$ (500 MHz, CDCl₃) 7.32–7.35 (2 H, m, ArH), 7.26–7.29 (1 H, m, ArH), 7.20–7.21 (2 H, m, ArH), 6.06 (1 H, dd, J 2.0, 1.1 Hz, $6=CH_2$), 5.64 (1 H, d, J 2.0 Hz, $6=CH_2$), 4.67–4.73 (2 H, m, 7-H and OCH_2CHN), 4.23 (1 H, dd, J 9.1, 7.6 Hz, OCH_2CHN), 4.19 (1 H, dd, J 9.1, 3.0 Hz, OCH₂CHN), 3.41–3.47 (2 H, m, OH and 8-H), 3.26–3.34 (2 H, m, 8-H and CH_2Ph), 2.82 (1 H, dd, J 13.5, 9.4 Hz, CH_2Ph); δ_C (125 MHz, $CDCl_3$) 171.2, 153.3, 134.8, 134.0, 129.4, 128.9, 127.4, 117.6, 72.1, 66.3, 55.0, 41.2, 37.6; HRMS (ES⁺) m/z calc. for $C_{15}H_{16}^{79}BrNO_4Na$ ([MNa]⁺): 376.0155, found: 376.0160.

t-Butyldimethylsilyl ether 109

To a stirred solution of alcohol 108 (21.21 g, 59.9 mmol) and 2,6-lutidine (9.1 mL, 78 mmol) in anhydrous CH₂Cl₂ (200 mL) was added TBSOTf (16.5 mL, 72.0 mmol) dropwise over 5 min at 0 °C. The mixture was allowed to warm to room temperature over 2 h, then EtOAc (600 mL) was added. The mixture was then washed with sat. aq. NH₄Cl (2 × 250 mL), brine (1 × 250 mL), dried (MgSO₄), filtered and concentrated in vacuo. The residue was purified by flash chromatography on silica gel (20% Et₂O in hexanes) to give 109 (26.54 g, 95%) as a colourless solid. $R_f = 0.47$ (silica gel, 1 : 1 hexanes–Et₂O); mp 55–56 °C; $[a]_D^{25}$ +10.6° (c 1.05 in CHCl₃); $v_{\text{max}}/\text{cm}^{-1}$ (film) 3028, 2955, 2856, 1788, 1704, 1472, 1376, 1207, 1048, 900; $\delta_{\rm H}$ (500 MHz, CDCl₃) 7.33–7.36 (2 H, m, ArH), 7.27-7.30 (1 H, m, ArH), 7.21-7.22 (2 H, m, ArH), 5.99 $(1 \text{ H}, \text{ s}, 6=\text{C}H_2), 5.58 (1 \text{ H}, \text{ d}, J 1.7 \text{ Hz}, 6=\text{C}H_2), 4.82 (1 \text{ H}, \text{ dd}, J 1.7 \text{ Hz}, 6=\text{C}H_2), 4.82 (1 \text{ H}, \text{ dd}, J 1.7 \text{ Hz}, 6=\text{C}H_2), 4.82 (1 \text{ H}, \text{ dd}, J 1.7 \text{ Hz}, 6=\text{C}H_2), 4.82 (1 \text{ H}, \text{ dd}, J 1.7 \text{ Hz}, 6=\text{C}H_2), 4.82 (1 \text{ H}, \text{ dd}, J 1.7 \text{ Hz}, 6=\text{C}H_2), 4.82 (1 \text{ H}, \text{ dd}, J 1.7 \text{ Hz}, 6=\text{C}H_2), 4.82 (1 \text{ H}, \text{ dd}, J 1.7 \text{ Hz}, 6=\text{C}H_2), 4.82 (1 \text{ H}, \text{ dd}, J 1.7 \text{ Hz}, 6=\text{C}H_2), 4.82 (1 \text{ H}, \text{ dd}, J 1.7 \text{ Hz}, 6=\text{C}H_2), 4.82 (1 \text{ H}, \text{ dd}, J 1.7 \text{ Hz}, 6=\text{C}H_2), 4.82 (1 \text{ H}, \text{ dd}, J 1.7 \text{ Hz}, 6=\text{C}H_2), 4.82 (1 \text{ H}, \text{ dd}, J 1.7 \text{ Hz}, 6=\text{C}H_2), 4.82 (1 \text{ H}, \text{ dd}, J 1.7 \text{ Hz}, 6=\text{C}H_2), 4.82 (1 \text{ H}, \text{ dd}, J 1.7 \text{ Hz}, 6=\text{C}H_2), 4.82 (1 \text{ H}, \text{ dd}, J 1.7 \text{ Hz}, 6=\text{C}H_2), 4.82 (1 \text{ H}, \text{ dd}, J 1.7 \text{ Hz}, 6=\text{C}H_2), 4.82 (1 \text{ H}, \text{ dd}, J 1.7 \text{ Hz}, 6=\text{C}H_2), 4.82 (1 \text{ H}, \text{ dd}, J 1.7 \text{ Hz}, 6=\text{C}H_2), 4.82 (1 \text{ H}, \text{ dd}, J 1.7 \text{ Hz}, 6=\text{C}H_2), 4.82 (1 \text{ H}, \text{ dd}, J 1.7 \text{ Hz}, 6=\text{C}H_2), 4.82 (1 \text{ H}, \text{ dd}, J 1.7 \text{ Hz}, 6=\text{C}H_2), 4.82 (1 \text{ H}, \text{ dd}, J 1.7 \text{ Hz}, 6=\text{C}H_2), 4.82 (1 \text{ H}, \text{ dd}, J 1.7 \text{ Hz}, 6=\text{C}H_2), 4.82 (1 \text{ H}, \text{ dd}, J 1.7 \text{ Hz}, 6=\text{C}H_2), 4.82 (1 \text{ H}, \text{ dd}, J 1.7 \text{ Hz}, 6=\text{C}H_2), 4.82 (1 \text{ H}, \text{ dd}, J 1.7 \text{ Hz}, 6=\text{C}H_2), 4.82 (1 \text{ H}, \text{ dd}, J 1.7 \text{ Hz}, 6=\text{C}H_2), 4.82 (1 \text{ H}, \text{ dd}, J 1.7 \text{ Hz}, 6=\text{C}H_2), 4.82 (1 \text{ H}, \text{ dd}, J 1.7 \text{ Hz}, 6=\text{C}H_2), 4.82 (1 \text{ H}, \text{ dd}, J 1.7 \text{ Hz}, J 1.7 \text{ Hz}, 6=\text{C}H_2), 4.82 (1 \text{ H}, J 1.7 \text{ Hz}, J 1.7$ J 8.0, 3.8 Hz, 7-H), 4.65–4.70 (1 H, m, OCH₂CHN), 4.15–4.21 (2 H, m, OCH₂CHN), 3.42 (1 H, dd, J 16.9, 8.0 Hz, 8-H), 3.30 (1 H, dd, J 13.4, 3.2 Hz, CH₂Ph), 3.24 (1 H, dd, J 16.9, 3.8 Hz, 8-H), 2.76 (1 H, dd, J 13.4, 9.6 Hz, CH_2Ph), 0.90 [9 H, s, $SiC(CH_3)_3$], 0.12 (3 H, s, SiC H_3), 0.11 (3 H, s, SiC H_3); δ_C (125 MHz, CDCl₃) 169.8, 153.3, 136.1, 135.1, 129.4, 129.0, 127.4, 117.3, 72.6, 66.1, 55.1, 43.0, 37.9, 25.7, 18.1, -4.7, -5.1; HRMS (ES⁺) m/z calc. for $C_{21}H_{31}^{79}BrNO_4Si$ ([MH]⁺): 468.1200, found: 468.1203.

Alcohol 110

A stirred solution of oxazolidinone 109 (26.44 g, 56.4 mmol) in THF (200 mL) and MeOH (9 mL) was cooled to -78 °C, where

LiBH₄ (70.5 mL, 2.0 M in THF, 141 mmol) was added dropwise. After warming to 0 °C over 3 h, the reaction was quenched by the slow dropwise addition of sat. aq. NH₄Cl (350 mL). The mixture was extracted with Et₂O (3 × 200 mL), and the combined organic layers were washed with brine (1 \times 200 mL), dried (MgSO₄), filtered and concentrated in vacuo. The residue was purified by flash chromatography on silica gel (20% EtOAc in hexanes) to give 110 (14.20 g, 85%) as a colourless oil. $R_f = 0.47$ (silica gel, 1: 1 hexanes–EtOAc); $[a]_D^{25}$ –26.4° (c 1.01 in CHCl₃); v_{max} /cm⁻¹ (film) 3345, 2955, 2885, 1625, 1472, 1408, 1254, 1026, 868; $\delta_{\rm H}$ (500 MHz, CDCl₃) 5.93 (1 H, dd, J 1.7, 1.2 Hz, 6=CH₂), 5.57 (1 H, d, J 1.7 Hz, $6=CH_2$), 4.40 (1 H, app t, J 5.4 Hz, 7-H), 3.86 (1 H, dt, J 10.8, 6.2 Hz, 9-H), 3.77 (1 H, dt, J 10.8, 5.3 Hz, 9-H), 2.12 (1 H, br s, OH), 1.93 (2 H, app q, J 5.3 Hz, 8-H and 8-H), 0.91 [9 H, s, SiC(C H_3)₃], 0.10 (3 H, s, SiC H_3), 0.08 (3 H, s, SiC H_3); δ_C (125 MHz, CDCl₃) 136.0, 116.5, 65.2, 59.3, 37.6, 25.8, 18.1, -4.8, -5.3; HRMS (ES⁺) m/z calc. for $C_{11}H_{23}^{79}BrO_2SiNa$ ([MNa]⁺): 317.0543, found: 317.0535.

Aldehyde 111

To a stirred suspension of alcohol 110 (14.10 g, 47.7 mmol) and solid NaHCO₃ (9.67 g, 115 mmol) in CH₂Cl₂ (60 mL) was added a solution of the Dess-Martin periodinane (24.20 g, 57.2 mmol) in 3:1 CH₂Cl₂-DMSO (120 mL) slowly at room temperature. After 90 min the reaction was quenched by the addition of water (200 mL). The mixture was diluted with Et₂O (600 mL), washed with sat. ag. Na₂S₂O₃ (1 \times 200 mL), brine (1 \times 200 mL), dried (MgSO₄), filtered and concentrated in vacuo. The residue was purified by flash chromatography on silica gel (10% EtOAc in hexanes) to give **111** (12.43 g, 89%) as a colourless oil. $R_{\rm f} = 0.54$ (silica gel, 4 : 1 hexanes–EtOAc); $[a]_D^{25}$ –32.0° (c 1.17 in CHCl₃); $v_{\text{max}}/\text{cm}^{-1}$ (film) 2957, 2858, 1728, 1473, 1255, 986; δ_{H} (500 MHz, CDCl₃) 9.76 (1 H, dd, J 2.4, 1.9 Hz, 9-H), 5.98 (1 H, dd, 1.8, 1.1 Hz, $6=CH_2$), 5.58 (1 H, dd, J 1.8, 0.5 Hz, $6=CH_2$), 4.67 (1 H, app dd, J 7.2, 4.1 Hz, 7-H), 2.78 (1 H, ddd, J 16.3, 7.2 and 2.4 Hz, 8-H), 2.67 $(1 \text{ H}, \text{ddd}, J \text{ } 16.3, 4.1 \text{ and } 1.9 \text{ Hz}, 8-\text{H}), 0.88 [9 \text{ H}, \text{ s}, \text{SiC}(\text{C}H_3)_3],$ 0.08 (6 H, s, SiC H_3 , SiC H_3); δ_C (125 MHz, CDCl₃) 200.1, 135.3, 117.1, 72.2, 49.6, 25.6, 18.0, -4.7, -5.2; HRMS (ES⁺) m/z calc. for $C_{11}H_{21}^{79}BrO_2SiNa$ ([MNa]⁺): 315.0386, found 315.0394.

Alkene 112

To a stirred suspension of KOt-Bu (0.639 g, 5.7 mmol) in THF (7 mL) at -45 °C was added trans-2-butene (1.1 mL, 11.4 mmol) followed by the dropwise addition of n-BuLi (2.30 mL, 2.5 M in hexanes, 5.7 mmol). After 30 min, the bright orange solution was cooled to -78 °C, where a solution of (+)-Ipc₂BOMe (1.80 g, 5.7 mmol) in THF (6 mL) was added, and the mixture stirred for 1 h before the addition of BF₃·OEt₂ (0.77 mL, 6.1 mmol). After an additional 30 min at -78 °C, a solution of aldehyde 111 (1.13 g, 3.80 mmol) in THF (3 mL) was added to the mixture dropwise over 10 min. After a further 3 h at -78 °C, the reaction was quenched by the addition of MeOH (1 mL) and warmed to 0 °C. A solution of 3 N ag. NaOH (18 mL) was then added, followed by the dropwise addition of 35% aq. H₂O₂ (4 mL) over 30 min. The stirred mixture was then allowed to warm to room temperature overnight, and was then diluted with water (15 mL) and extracted with Et₂O (3 \times 20 mL). The combined organic layers were washed with brine

 $(1 \times 25 \text{ mL})$, dried (MgSO₄), filtered and concentrated in vacuo. The residue was purified by flash chromatography on silica gel $(5\% \text{ Et}_2\text{O in hexanes})$ to give **112** (1.123 g, 84%) as a colourless oil. $R_{\rm f} = 0.42$ (silica gel, 4 : 1 hexanes–EtOAc); $[a]_{\rm D}^{25} - 18.5^{\circ}$ (c 2.17 in CHCl₃); $v_{\text{max}}/\text{cm}^{-1}$ (film) 3529, 2957, 2858, 1618, 1458, 1258, 896; $\delta_{\rm H}$ (500 MHz, CDCl₃) 5.96 (1 H, s, 6=C H_2), 5.77 (1 H, ddd, J 16.6, 10.9 and 8.0 Hz, 11-H), 5.57 (1 H, s, $6=CH_2$), 5.06–5.09 (2 H, m, 12-H and 12-H), 4.49 (1 H, dd, J 6.3, 3.2 Hz, 7-H), 3.67 (1 H, ddd, J 10.3, 5.6 and 1.3 Hz, 9-H), 2.56 (1 H, br s, OH), 2.17–2.19 (1 H, dqd, J 8.0, 6.8, and 5.6 Hz, 10-H), 1.90 (1 H, ddd, J 14.3, 6.3 and 1.3 Hz, 8-H), 1.65 (1 H, ddd, J 14.3, 10.3 and 3.2 Hz, 8-H), 1.03 $(3 \text{ H}, d, J 6.8 \text{ Hz}, 10\text{-C}H_3), 0.91 [9 \text{ H}, s, SiC(C}H_3)_3], 0.10 (3 \text{ H}, s, SiC(C}H_3)_3]$ $SiCH_3$), 0.08 (3 H, s, $SiCH_3$); δ_C (125 MHz, CDCl₃) 140.3, 135.6, 116.4, 115.6, 74.8, 70.8, 44.0, 38.9, 25.7, 18.0, 15.8, -4.9, -5.5; HRMS (ES⁺) m/z calc. for $C_{15}H_{29}^{79}BrO_2SiNa$ ([MNa]⁺): 371.1012, found: 371.1009.

Ethyl ester 114

Solid Ph₃CBF₄ (0.028 g, 0.085 mmol) was added in one portion to a stirred solution of alcohol 112 (0.99 g, 2.83 mmol) and pmethoxybenzyl-2,2,2-trichloroacetimidate 47 (1.97 g, 7.00 mmol) in Et₂O (15 mL) at room temperature. After 18 h the reaction was quenched by the addition of sat. aq. NaHCO₃ (40 mL), the layers were were separated and the aqueous layer was extracted with EtOAc (3 \times 20 mL). The combined organic layers were washed with brine (1 \times 40 mL), dried (MgSO₄), filtered and concentrated in vacuo. The residue was purified by flash chromatography on silica gel (2.5% Et₂O in hexanes) to give 1.04 g of a colourless oil, which was dissolved in CH₂Cl₂ (70 mL) and cooled to -78 °C where a stream of ozone (ca. 10% in oxygen) was bubbled through the mixture until TLC analysis confirmed the complete consumption of starting material. Oxygen was bubbled through the solution for an additional 20 min to remove excess ozone. PPh₃ (3.25 g, 12.4 mmol) was added to the solution, which was then stirred and warmed to room temperature over 1 h. The mixture was then concentrated under reduced pressure, and triturated with 4: 1 hexanes-Et₂O. The precipitated Ph₃PO was then removed by filtration, and the filtrate was concentrated in vacuo. Quick filtration through silica gel with 20: 1 hexanes-Et₂O removed the excess PPh₃, and the residue was taken up in benzene (10 mL). (Carbethoxyethylidene)triphenylphosphorane (1.32 g, 3.65 mmol) was added in one portion, and the solution was heated to reflux for 16 h. After cooling to room temperature the mixture was concentrated in vacuo. The residue was triturated with 5:1 hexanes–Et₂O, and the solid Ph₃PO was removed by filtration. The filtrate was then concentrated under reduced pressure, and purified by flash chromatography on silica gel (10% Et₂O in hexanes) to give 114 (0.908 g, 58% from 112) as a colourless oil. $R_f = 0.42$ (silica gel, 4: 1 heaxnes–EtOAc); $[a]_D^{25}$ –6.8° (c 4.03 in CHCl₃); v_{max} /cm⁻¹ (film) 2957, 2857, 1710, 1464, 1299, 1095, 838; $\delta_{\rm H}$ (600 MHz, CDCl₃) 7.29 (2 H, d, J 8.5 Hz, ArH), 6.91 (2 H, d, J 8.5 Hz, ArH), 6.71 (1 H, d, J 9.7 Hz, 11-H), 5.85 (1 H, s, $6=CH_2$), 5.51 $(1 \text{ H}, \text{ s}, 6=\text{C}H_2), 4.57 (1 \text{ H}, \text{ d}, J 11.0 \text{ Hz}, \text{OC}H_2\text{Ar}), 4.48 (1 \text{ H}, \text{ d},$ J 11.0 Hz, OCH₂Ar), 4.29 (1 H, dd, J 8.6, 2.9 Hz, 7-H), 4.21 (2 H, q, J 7.1 Hz, CO₂CH₂CH₃), 3.83 (3 H, s, ArOCH₃), 3.52–3.55 (1 H, m, 9-H), 2.87–2.93 (1 H, m, 10-H), 1.89 (3 H, s, 12-CH₃), 1.84 (1 H, ddd, J 14.1, 8.4 and 2.9 Hz, 8-H), 1.72 (1 H, ddd, J 14.1, 8.6 and 3.1 Hz, 8-H), 1.32 (3 H, t, J 7.1 Hz, CO₂CH₂CH₃), 1.07 (3 H, d, J 6.8 Hz, 10-C H_3), 0.91 [9 H, s, SiC(C H_3)₃], 0.07 (3 H, s, SiC H_3), 0.05 (3 H, s, SiC H_3); δ_C (150 MHz, CDCl₃) 168.0, 159.1, 143.4, 138.4, 130.8, 129.0, 128.1, 116.4, 113.7, 78.3, 73.9, 71.1, 60.4, 55.2, 39.4, 36.2, 25.7, 18.0, 14.8, 14.3, 12.7, -4.4, -5.1; HRMS (ES⁺) m/z calc. for C₂₇H₄₃⁷⁹BrO₃SiNa ([MNa]⁺): 577.1955, found: 577.1941.

Allylic alcohol 115

To a stirred solution of ethyl ester 114 (0.890 g, 1.60 mmol) in toluene (8 mL) was added DIBAL-H (4.0 mL, 1.0 M in toluene, 4.0 mmol) dropwise at 0 °C. After 1 h, the reaction was quenched by the cautious addition of sat. aq. Rochelle's salt (20 mL) and allowed to warm to room temperature overnight. The mixture was diluted with water (20 mL) and extracted with EtOAc (3×25 mL). The combined organic layers were washed with brine $(1 \times 25 \text{ mL})$, dried (MgSO₄), filtered and concentrated in vacuo. The residue was purified by flash chromatography on silica gel (15% EtOAc in hexanes) to give 115 (0.711 g, 87%) as a viscous, colourless oil. $R_{\rm f} = 0.31$ (silica gel, 1 : 1 hexanes-EtOAc); $[a]_{\rm D}^{25} - 22.7^{\circ}$ (c 4.0 in CHCl₃); ν_{max} /cm⁻¹ (film) 3404, 2953, 2856, 1511, 1457, 1366, 1248, 1039, 894; $\delta_{\rm H}$ (500 MHz, CDCl₃) 7.28 (2 H, d, J 8.5 Hz, ArH), 6.88 (2 H, d, J 8.5 Hz, ArH), 5.82 (1 H, s, 6=C H_2), 5.48 (1 H, d, J 1.6 Hz, 6=CH₂), 5.33 (1 H, d, J 9.3 Hz, 11-H), 4.57 (1 H, d, J 11.0 Hz, OCH₂Ar), 4.43 (1 H, d, J 11.0 Hz, OCH₂Ar), 4.28 (1 H, dd, J 8.7, 3.0 Hz, 7-H), 3.99 (2 H, s, 13-H and 13-H), 3.80 (3 H, s, ArOCH₃), 3.47–3.49 (1 H, m, 9-H), 2.81–2.85 (1 H, m, 10-H), 1.72 $(3 \text{ H}, \text{ s}, 12\text{-C}H_3), 1.65\text{--}1.79 (2 \text{ H}, \text{ m}, 8\text{-H} \text{ and } 8\text{-H}), 0.99 (3 \text{ H}, \text{ d},$ J 6.8 Hz, 10-C H_3), 0.89 [9 H, s, SiC(C H_3)₃], 0.05 (3 H, s, SiC H_3), 0.04 (3 H, s, SiC H_3); δ_C (125 MHz, CDCl₃) 159.0, 138.6, 135.4, 131.1, 128.9, 128.1, 116.3, 113.7, 78.8, 73.9, 70.8, 68.9, 55.3, 38.8, 34.4, 25.7, 18.1, 15.2, 13.9, -4.4, -5.1; HRMS (ES+) m/z calc. for $C_{25}H_{41}^{79}BrO_4SiNa$ ([MNa]⁺): 535.1850, found: 535.1831.

Bromide 116

To a stirred solution of allylic alcohol 115 (2.80 g, 5.45 mmol) and Et₃N (3.03 mL, 21.81 mmol) in THF (50 mL) was added MsCl (1.27 mL, 16.36 mmol) dropwise at 0 °C. After 1 h the solution was warmed to room temperature and LiBr (4.73 g, 54.52 mmol) was added in one portion. After an additional 30 min at room temperature the reaction was quenched with water (80 mL) and extracted with Et₂O (3 \times 60 mL). The combined organic layers were dried (MgSO₄), filtered, and concentrated in vacuo. The residue was purified by flash chromatography on silica gel (gradient: 2–4% Et₂O in hexanes) to give **116** (2.888 g, 92%) as a light yellow oil. $R_f = 0.38$ (silica gel, 9 : 1 hexanes–Et₂O); $[a]_{D}^{25}$ -17.9° (c 1.07 in CH₂Cl₂); v_{max} /cm⁻¹ (film) 2955, 2856, 1613, 1461, 1302, 1096, 837; $\delta_{\rm H}$ (600 MHz, CDCl₃) 7.28 (2 H, d, J 8.4 Hz, ArH), 6.89 (2 H, d, J 8.4 Hz, ArH), 5.83 (1 H, s, $6=CH_2$), 5.53 (1 H, d, J 9.3 Hz, 11-H), 5.49 (1 H, s, 6=CH₂), 4.54 (1 H, d, J 10.9 Hz, OCH_2Ar), $4.43 (1 \text{ H}, d, J 10.9 \text{ Hz}, OCH_2Ar)$, 4.27 (1 H, d)dd, J 8.5 Hz, 2.8 Hz, 7-H), 3.98 (1 H, d, J 9.6 Hz, 13-H), 3.96 (1 H, d, J 9.6 Hz, 13-H), 3.81 (3 H, s, ArOC H_3), 3.45–3.49 (1 H, m, 9-H), 2.73–2.78 (1 H, m, 10-H), 1.79 (3 H, s, 12-CH₃), 1.71–1.79 (1 H, m, 8-H), 1.66 (1 H, ddd, J 14.1, 8.7 and 2.8 Hz, 8-H), 0.98 $(3 \text{ H}, d, J 6.8 \text{ Hz}, 10\text{-C}H_3), 0.90 [9 \text{ H}, \text{s}, \text{SiC}(\text{C}H_3)_3], 0.06 (3 \text{ H}, \text{s},$ $SiCH_3$), 0.04 (3 H, s, $SiCH_3$); δ_C (150 MHz, CDCl₃) 159.0, 138.5, 133.1, 132.4, 130.9, 129.0, 116.3, 113.7, 78.5, 73.8, 70.9, 55.3, 41.5, 38.9, 35.4, 25.8, 18.1, 15.1, 14.9, -4.4, -5.0; HRMS (ES⁺) m/z calc. for $C_{25}H_{40}^{79}Br_2O_3SiNa$ ([MNa]⁺): 597.1006, found: 597.1017.

Alkynyl diol 118

To a stirred solution of oxazolidinone 117⁴⁷ (13.0 g, 32.37 mmol) in a mixture of THF (250 mL) and MeOH (2.8 mL) was added LiBH₄ (40 mL, 2.0 M in THF, 80.0 mmol) dropwise over 20 min at 0 °C. The mixture was allowed to warm to room temperature over 3 h, then quenched by the cautious addition of 1 M aq. NaOH (40 mL). The mixture was then partitioned between EtOAc (250 mL) and brine (250 mL). The layers were separated, and the aqueous layer was extracted with EtOAc (2 \times 250 mL). The combined organic layers were dried (MgSO₄), filtered and concentrated in vacuo. The residue was purified by flash chromatography on silica gel (50% EtOAc in hexanes) to give 118 (4.3 g, 58%) as a white powder. $R_f = 0.17$ (silica gel, 3 : 2 hexanes-EtOAc); mp 74-75 °C; $[a]_D^{25}$ +3.6° (c 1.13 in CHCl₃); $v_{\rm max}/{\rm cm}^{-1}$ (film) 3480, 3020, 2858, 2168, 1413, 1022, 830; $\delta_{\rm H}$ (400 MHz, CDCl₃) 4.50 (1 H, d, J 3.2 Hz, 3-H), 3.80–3.85 (2 H, m, 1-H and OH), 3.63 (1 H, dd, J 10.8, 4.0 Hz, 1-H), 3.21 (1 H, br s, OH), 2.02–2.11 (1 H, m, 2-H), 0.89–0.91 [12 H, m, 2- CH_3 and $SiC(CH_3)_3$, 0.09 (3 H, s, $SiCH_3$), 0.08 (3 H, s, $SiCH_3$); $\delta_{\rm C}$ (100 MHz, CDCl₃) 105.2, 89.0, 66.7, 65.5, 40.1, 26.0, 16.4, 12.4, -4.7; HRMS (ES⁻) m/z calc. for $C_{12}H_{24}O_2Si^{35}Cl$ ([MCl]⁻): 263.1240, found: 263.1247.

Triphenylmethyl ether 119

To a stirred solution of diol 118 (300 mg, 1.31 mmol) in CH₂Cl₂ (5 mL) were added TrCl (400 mg, 1.44 mmol), Et₃N (0.29 mL) and 4-DMAP (a few crystals) at room temperature. After 8 h, the reaction was quenched by the addition of water (10 mL). The mixture was then partioned between CH₂Cl₂ (20 mL) and brine (20 mL). The layers were separated, and the aqueous layer was extracted with CH₂Cl₂ (2 × 20 mL). The combined organic layers were dried (MgSO₄), filtered and concentrated in vacuo. The residue was purified by flash chromatography on silica gel (gradient: 10–12% CH₂Cl₂ in hexanes) to give **119** (591 mg, 96%) as a colourless paste. $R_f = 0.34$ (silica gel, 22 : 3 hexanes–EtOAc); $[a]_{D}^{25}$ +58.8° (c 1.17 in CHCl₃); v_{max} /cm⁻¹ (film) 3456, 3059, 2929, 2169, 1489, 1252, 1118, 836; $\delta_{\rm H}$ (500 MHz, CDCl₃) 7.46 (6 H, d, J 7.5 Hz, ArH), 7.29 (6 H, t, J 7.5 Hz, ArH), 7.22 (3 H, t, J 7.3 Hz, ArH), 4.53 (1 H, dd, J 7.3, 3.8 Hz, 3-H), 3.39–3.43 (2 H, m, 1-H and OH), 3.23 (1 H, dd, J 9.3, 4.9 Hz, 1-H), 2.17–2.25 (1 H, m, 2-H), 0.92–0.94 [12 H, m, 2-C H_3 and SiC(C H_3)₃], 0.10 $(3 \text{ H, s, SiC}H_3), 0.09 (3 \text{ H, s, SiC}H_3); \delta_C (125 \text{ MHz, CDCl}_3) 143.6,$ 128.5, 127.7, 126.9, 105.7, 87.9, 87.3, 66.2, 66.1, 39.1, 26.0, 16.3, 12.7, -4.7; HRMS (MALDI-TOF) m/z calc. for $C_{31}H_{38}O_2SiNa$ ([MNa]+): 493.2533, found: 493.2535.

Alkyne 120

To a stirred solution of alcohol 119 (580 mg, 1.23 mmol) in THF (4 mL) was added TBAF (2.46 mL, 1.0 M in THF, 2.46 mmol) in one portion at room temperature. After 2 h, the reaction was quenched by the addition of sat. aq. NH₄Cl (10 mL), before being partitioned between EtOAc (20 mL) and brine (20 mL). The layers were separated, and the aqueous layer was extracted with EtOAc (2 \times 20 mL). The combined organic layers were dried (MgSO₄),

filtered and concentrated *in vacuo*. The residue was purified by flash chromatography on silica gel (20% EtOAc in hexanes) to give **120** (331 mg, 75%) as a colourless paste. $R_{\rm f} = 0.22$ (silica gel, 4 : 1 hexanes–EtOAc); $[a]_{\rm D}^{25}$ +6.7° (c 1.25 in CHCl₃); $v_{\rm max}/{\rm cm}^{-1}$ (film) 3424, 3297, 3058, 2929, 2108, 1490, 1220, 1071, 901; $\delta_{\rm H}$ (500 MHz, CDCl₃) 7.47 (6 H, d, J 7.4 Hz, ArH), 7.29 (6 H, t, J 7.4 Hz, ArH), 7.22 (3 H, t, J 7.3 Hz, 3 H, ArH), 4.52 (1 H, ddd, J 7.6, 3.6 and 2.2 Hz, 3-H), 3.67 (1 H, br d, J 7.6 Hz, OH), 3.36 (1 H, t, J 9.2 Hz, 1-H), 3.27 (1 H, dd, J 9.2, 4.5 Hz, 1-H), 2.30 (1 H, d, J 2.2 Hz, 5-H), 2.19–2.24 (1 H, m, 2-H), 0.90 (3 H, d, J 7.0 Hz, 2-C H_3); $\delta_{\rm C}$ (125 MHz, CDCl₃) 143.5, 128.5, 127.7, 126.9, 87.2, 83.0, 73.5, 66.0, 65.6, 38.8, 12.5; HRMS (MALDI-FTMS) m/z calc. for $C_{25}H_{24}O_2Na$ ([MNa]+): 379.1668, found: 379.1674.

Tri-*n*-butyltin alkene 121

To a stirred solution of alkyne 120 (290 mg, 0.814 mmol) in THF (4 mL) was added PdCl₂(PPh₃)₂ (33 mg, 0.047 mmol) in one portion at RT. After 1 min, n-Bu₃SnH (0.5 mL, 1.859 mmol) was added dropwise over 3 min. TLC analysis (4:1, hexanes–EtOAc) of the reaction after a further 10 min indicated the complete consumption of alkyne starting material, and the mixture was concentrated. The residue was purified by flash chromatography on silica gel (6% EtOAc in hexanes) to give 121 (322 mg, 61%) as a colourless oil. $R_f = 0.26$ (silica gel, 47 : 3 hexanes–EtOAc); $[a]_{\rm D}^{25}$ -0.6° (c 1.04 in CHCl₃); $v_{\rm max}/{\rm cm}^{-1}$ (film) 3485, 2924, 1599, 1451, 1072, 908, 738; $\delta_{\rm H}$ (500 MHz, CDCl₃) 7.46 (6 H, d, J 7.4 Hz, ArH), 7.30 (6 H, t, J 7.4 Hz, ArH), 7.22 (3 H, t, J 7.3 Hz, 3 H, ArH), 6.17 (1 H, dd, J 19.2, 1.3 Hz, 5-H), 5.94 (1 H, dd, J 19.2, 5.0 Hz, 4-H), 4.26–4.30 (1 H, m, 3-H), 3.16– 3.22 (2 H, m, 1-H and 1-H), 2.82 (1 H, d, J 5.4 Hz, OH), 2.03– 2.08 (1 H, m, 2-H), 1.44–1.53 [6 H, m, $Sn(CH_2CH_2CH_2CH_3)_3$], 1.27-1.35 [6 H, m, Sn(CH₂CH₂CH₂CH₃)₃], 0.88-0.91 [18 H, m, 2-C H_3 , Sn(C H_2 C H_2 C H_2 C H_3)₃ and Sn(C H_2 C H_2 C H_2 C H_3)₃]; δ_C (125 MHz, CDCl₃) 148.6, 143.8, 128.5, 127.8, 127.8, 126.9, 87.0, 66.7, 66.7, 38.6, 29.0, 27.2, 13.6, 11.5, 9.4; HRMS (MALDI-FTMS) m/z calc. for $C_{37}H_{52}O_2SnNa$ ([MNa]⁺): 671.2881, found: 671.2905.

Hydrazone 122

A solution of hydrazone 10 (0.426 g, 1.76 mmol) in THF (10 mL) was added dropwise to a stirred solution of freshly prepared LDA (1.76 mmol) in THF (10 mL) at -78 °C. After 2.5 h, a solution of dibromide **116** (0.882 g, 1.53 mmol) in THF (10 mL) was added dropwise over 10 min and the reaction was stirred at -78 °C for an additional hour before being quenched by the addition of aqueous pH 7.0 buffer (50 mL) and warmed to room temperature. The reaction mixture was extracted with Et₂O (3 \times 30 mL), and the combined organic layers were dried (MgSO₄), filtered and concentrated in vacuo. The residue was purified by flash chromatography (15% Et₂O in hexanes with 1.5% Et₃N) to give 122 (1.03 g, 91%) as a viscous, colourless oil. $R_{\rm f}=0.24$ (silica gel, 3 : 2 hexanes-Et₂O + 2% Et₃N); $[a]_D^{25}$ -55.4° (c 1.05 in CH_2Cl_2 ; ν_{max}/cm^{-1} (film) 2929, 2856, 1614, 1371, 1248, 1097, 836; $\delta_{\rm H}$ (600 MHz, C_6D_6) 7.36 (2 H, d, J 8.4 Hz, ArH), 6.85 $(2 \text{ H}, d, J 8.4 \text{ Hz}, \text{Ar}H), 5.57 (1 \text{ H}, s, 6=\text{C}H_2), 5.43 (1 \text{ H}, d, J)$ 8.9 Hz, 11-H), 5.29 (1 H, s, 6=CH₂), 4.73 (1 H, d, J 6.9 Hz, 7-H), 4.67 (1 H, d, J 11.0 Hz, OCH₂Ar), 4.49–4.54 (3 H, m, 14-H,

16-H and OCH₂Ar), 4.24 (1 H, d, J 12.5 Hz, 16-H), 3.72-3.75 (1 H, m, 9-H), 3.63 (1 H, dd, J 8.8, 3.8 Hz, NCHCH₂OCH₃), 3.57–3.61 (1 H, m, NCHCH₂OCH₃), 3.31 (3 H, s, ArOCH₃), 3.30–3.34 (1 H, m, NCHCH₂OCH₃), 3.21 (3 H, s, CH₂OCH₃), 3.12–3.16 (1 H, m, NCH₂CH₂), 3.03 (1 H, d, J 14.1 Hz, 13-H), 2.93–2.98 (1 H, m, 10-H), 2.54 (1 H, dd, J 14.1, 7.6 Hz, 13-H), 2.32-2.36 (1 H, m, NCH₂CH₂), 1.98-2.06 (2 H, m, 8-H and 8-H), 1.92-1.95 (1 H, m, NCHC H_2 CH₂), 1.87 (3 H, s, 12-C H_3), 1.60–1.68 (2 H, m, NCH₂CH₂CH₂ and NCHCH₂CH₂), 1.51– 1.56 (1 H, m, NCH₂CH₂CH₂), 1.47 [3 H, s, O₂C(CH₃)₂], 1.41 [3 H, s, O₂C(CH₃)₂], 1.13 (3 H, d, J 6.8 Hz, 10-CH₃), 1.01 [9 H, s, SiC(C H_3)₃], 0.11 (3 H, s, SiC H_3), 0.10 (3 H, s, SiC H_3); δ_C (150 MHz, C₆D₆) 159.6, 158.6, 139.5, 132.9, 131.7, 129.9, 129.0, 116.3, 114.1, 99.9, 78.9, 76.2, 74.4, 71.4, 71.0, 67.4, 64.5, 58.9, 54.7, 53.3, 39.1, 37.4, 35.0, 27.5, 27.4, 26.1, 24.6, 23.2, 18.4, 17.6, 15.6, -4.2, -4.8; HRMS (ES⁺) m/z calc. for $C_{37}H_{62}^{79}BrN_2O_6Si$ ([MH]⁺): 737.3555, found: 737.3550.

Ketone 123

A solution of hydrazone 122 (1.00 g, 1.35 mmol) in THF (8 mL) was added dropwise to a stirred solution of freshly prepared LDA (1.60 mmol) in THF (8 mL) at -78 °C. After 1 h a solution of iodide 55 (0.945 g, 1.60 mmol) in THF (8 mL) was added slowly over 10 min. After stirring for an additional hour at -78 °C, the reaction was quenched by the addition of aqueous pH 7.0 buffer solution (40 mL) and warmed to room temperature. The mixture was extracted with Et₂O (3 \times 30 mL) and the combined organic layers were dried (MgSO₄), filtered and concentrated in vacuo. Rapid flash chromatography (5% Et₂O in hexanes with 2% Et₃N) separated the excess iodide starting material and afforded the crude bis-alkylated hydrazone, which was taken up in a mixture of Et₂O (15 mL) and sat. aq. (CO₂H)₂ (15 mL) and stirred vigorously at room temperature for two days before the addition of water (40 mL), and extraction with Et₂O (3 \times 40 mL). The combined organic layers were washed with brine (1 × 40 mL), dried (MgSO₄), filtered and concentrated in vacuo. The residue was purified by flash chromatography on silica gel (gradient: 5-10% Et₂O in hexanes) to give **123** (1.02 g, 70% from **122**) as a viscous, light yellow syrup. $R_{\rm f} = 0.34$ (silica gel, 4 : 1 hexanes— Et₂O); $[a]_D^{25}$ +26.4° (c 1.17 in CH₂Cl₂); v_{max} /cm⁻¹ (film) 2951, 2856, 1744, 1514, 1301, 1171, 836; $\delta_{\rm H}$ (600 MHz, C_6D_6) 7.38 (2 H, d, J 8.4 Hz, ArH), 7.33 (2 H, d, J 8.4 Hz, ArH), 6.83–6.88 (4 H, m, ArH), 5.57 (1 H, s, 6=CH₂), 5.63 (1 H, d, J 9.1 Hz, 11-H), 5.30 $(1 \text{ H}, \text{ s}, 6=\text{C}H_2), 4.82 (1 \text{ H}, \text{d}, J 11.3 \text{ Hz}, \text{OC}H_2\text{Ar}), 4.61-4.63 (3 \text{ H}, \text{d})$ m, OCH_2Ar and OCH_2Ar), 4.46–4.49 (2 H, m, 7-H and OCH_2Ar), 4.28 (1 H, dd, 9.8, 1.5 Hz, 14-H), 4.16–4.20 (1 H, m, 19-H), 4.12 (1 H, dd, J 7.6, 3.4 Hz, 16-H), 4.05–4.10 (1 H, m, 21-H), 3.93 (1 H, q, J 6.9 Hz, 24-H), 3.66 (1 H, ddd, J 8.9, 8.6 and 3.0 Hz, 9-H), 3.33 (3 H, s, ArOCH₃), 3.31 (3 H, s, ArOCH₃), 3.31–3.33 (1 H, m, 25-H,), 2.81–2.87 (1 H, m, 10-H), 2.79 (1 H, d, J 14.2 Hz, 13-H), 2.30 (1 H, dd, J 15.1, 9.9 Hz, 13-H), 2.15–2.21 (1 H, m, 17-H), 2.03 (1 H, ddd, J 14.1, 8.9 and 2.8 Hz, 8-H), 1.94 (1 H, ddd, J 14.1, 9.1 and 3.0 Hz, 8-H), 1.64 (3 H, s, 12-CH₃), 1.62–1.89 (6 H, m, 17-H, 18-H, 18-H, 20-H, 20-H and 22-H), 1.47–1.61 (5 H, m, 23-H, 23-H, 26-H, 26-H and 27-H), 1.39 [3 H, s, $O_2C(CH_3)_2$], 1.34 [3 H, s, $O_2C(CH_3)_2$], 1.25–1.45 (4 H, m, 22-H, 27-H, 28-H and 28-H), 1.05–1.06 (3 H, m, 10-C H_3), 1.05 [9 H, s, SiC(C H_3)₃], 0.99 [9 H, s, $SiC(CH_3)_3$], 0.92 (3 H, t, J 7.3 Hz, 28-C H_3), 0.25 (3 H, s, SiC H_3), 0.21 (3 H, s, SiC H_3), 0.09 (3 H, s, SiC H_3), 0.07 (3 H, s, SiC H_3); $\delta_{\rm C}$ (150 MHz, ${\rm C_6D_6}$) 210.1, 159.6, 159.5, 139.5, 132.2, 132.1, 131.7, 129.5, 129.3, 129.0, 116.3, 114.1, 113.9, 101.1, 82.4, 81.4, 79.1, 76.1, 74.7, 74.5, 74.1, 72.7, 71.1, 69.9, 54.8, 54.7, 43.9, 39.4, 38.6, 35.2, 34.1, 31.7, 31.4, 28.3, 27.9, 26.3, 26.0, 24.7, 24.2, 24.1, 23.3, 18.4, 18.4, 17.0, 15.8, 14.4, -4.2, -4.2, -4.4, -4.8; HRMS (ES⁺) m/z calc. for ${\rm C_{58}H_{95}}^{79}{\rm BrO_{10}Si_2Na}$ ([MNa]⁺): 1109.5559, found: 1109.5554.

Triol 124

TsOH·H₂O (26.1 mg, 0.138 mmol) was added in one portion to a stirred solution of ketone 123 (300 mg, 0.275 mmol) in 5:1 MeOH–CH $_2$ Cl $_2$ (12 mL) at room temperature. After 16 h, Et $_3$ N (0.50 mL) was added, and the reaction mixture was concentrated in vacuo. The residue was purified by flash chromatography on silica gel (gradient: 15–30% EtOAc in hexanes) to give **124** (131 mg, 57%) as a colourless oil and as a single anomer. $R_{\rm f} = 0.30$ (silica gel, 3: 2 hexanes–EtOAc); $[a]_D^{25}$ –74.7° (c 0.15 in CH₂Cl₂); v_{max} /cm⁻¹ (film) 3398, 2954, 1612, 1513, 1382, 1172, 974, 821; $\delta_{\rm H}$ (500 MHz, C_6D_6) 7.31 (2 H, d, J 8.6 Hz, ArH), 7.25 (2 H, d, J 8.6 Hz, ArH), 6.81 (2 H, d, J 8.6 Hz, ArH), 6.78 (2 H, d, J 8.6 Hz, ArH), 5.86 (1 H, s, $6=CH_2$), 5.41 (1 H, s, $6=CH_2$), 5.21 (1 H, d, J 8.7 Hz, 11-H), 4.74 (1 H, d, J 11.2 Hz, OCH₂Ar), 4.63 (1 H, br s, OH), 4.56 (1 H, d, J 11.2 Hz, OC H_2 Ar), 4.54 (1 H, d, J 11.2 Hz, OC H_2 Ar), 4.38-4.42 (2 H, m, 7-H and OC H_2 Ar), 4.19-4.24 (1 H, m, 21-H), 3.99–4.05 (3 H, m, 14-H, 19-H and OH), 3.91–3.95 (2 H, m, 16-H and 24-H), 3.68 (1 H, ddd, J 8.6, 4.6 and 2.4 Hz, 9-H), 3.34 (3 H, s, ArOCH₃), 3.33 (3 H, s, ArOCH₃), 3.26–3.30 (1 H, m, 25-H), 3.21 (3 H, s, OCH₃), 2.82–2.88 (1 H, m, 10-H), 2.33–2.46 (2 H, m, 13-H and 13-H), 1.99–2.05 (2 H, m, 8-H and 17-H), 1.86–1.95 (2 H, m, 8-H and 18-H), 1.66 (3 H, s, 12-CH₃), 1.45–1.83 (9 H, m, 17-H, 20-H, 20-H, 22-H, 23-H, 23-H, 26-H, 26-H and 27-H), 1.16-1.42 (6 H, m, 18-H, 22-H, 27-H, 28-H, 28-H and OH), 1.01 (3 H, d, J 6.8 Hz, 10-C H_3), 0.89 (3 H, t, J 7.1 Hz, 28-C H_3); δ_c (125 MHz, C_6D_6) 159.7, 159.6, 138.4, 133.0, 132.1, 131.2, 130.6, 129.6, 129.4, 115.9, 114.1, 114.0, 97.7, 82.5, 81.6, 79.5, 75.7, 73.9, 72.7, 72.5, 71.6, 68.8, 67.4, 54.8, 54.8, 47.7, 42.9, 41.2, 36.4, 34.9, 31.9, 28.3, 28.0, 27.2, 25.5, 23.3, 16.8, 15.1, 14.4; HRMS (ES⁺) m/z calc. for C₄₄H₆₅BrO₁₀Na ([MNa]⁺): 855.3653, found: 855.3645.

Triethylsilyl ether 125

To a stirred solution of triol 124 (74.3 mg, 89 µmol) and 2,6lutidine (105 μ L, 900 μ mol) in CH₂Cl₂ (4 mL) at -78 °C was added TESOTf (102 μ L, 450 μ mol) dropwise at -78 °C. The mixture was then warmed to -10 °C and stirred for 30 min before being quenched by the slow addition of sat. aq. NaHCO₃ (10 mL) and warmed to room temperature. The layers were separated, and the aqueous layer was extracted with Et_2O (3 × 5 mL). The combined organic layers were washed with sat. aq. $NH_4Cl(1 \times 10 \text{ mL})$, brine $(1 \times 10 \text{ mL})$, dried (MgSO₄), filtered and concentrated in vacuo. The residue was purified by flash chromatography on silica gel (10% Et₂O in hexanes) to give 125 (91.2 mg, 87%) as a light yellow oil. $R_f = 0.36$ (silica gel, 4 : 1 hexanes–Et₂O); $[a]_D^{25} - 26.7^\circ$ (c 4.35 in CH_2Cl_2); v_{max}/cm^{-1} (film) 2954, 1616, 1419, 1302, 1171, 1049, 894; $\delta_{\rm H}$ (600 MHz, C₆D₆) 7.33–7.36 (4 H, m, ArH), 6.82–6.83 (4 H, m, ArH), 5.64 (1 H, s, $6=CH_2$), 5.45 (1 H, d, J 8.9 Hz, 11-H), 5.32 $(1 \text{ H}, \text{ s}, 6=\text{C}H_2), 4.78 (1 \text{ H}, \text{ d}, J 11.3 \text{ Hz}, \text{OC}H_2\text{Ar}), 4.65 (1 \text{ H},$ d, J 11.2 Hz, OCH₂Ar), 4.59 (1 H, d, J 11.3 Hz, OCH₂Ar), 4.51– 4.53 (2 H, m, 7-H and OCH₂Ar), 4.29-4.33 (2 H, m, 14-H and 21-H), 4.06 (1 H, app t, J 10.3 Hz, 19-H), 3.97 (1 H, q, J 6.9 Hz, 24-H), 3.88-3.90 (1 H, m, 16-H), 3.67-3.73 (1 H, m, 9-H), 3.37 $(3 \text{ H}, \text{ s}, \text{OC}H_3), 3.31 (3 \text{ H}, \text{ s}, \text{ArOC}H_3), 3.31 (3 \text{ H}, \text{ s}, \text{ArOC}H_3),$ 3.31–3.33 (1 H, m, 25-H,), 2.95–3.00 (1 H, m, 10-H), 2.64–2.70 (1 H, m, 13-H), 2.37 (1 H, dd, J 13.7, 9.8 Hz, 13-H), 2.09–2.18 (2 H, m, 8-H and 17-H), 1.99 (1 H, ddd, J 13.4, 8.7 and 2.9 Hz, 8-H), 1.89 (3 H, s, 12-CH₃), 1.81–1.89 (3 H, m, 18-H, 20-H and 22-H), 1.60-1.66 (2 H, m, 20-H and 26-H), 1.49-1.57 (5 H, m, 17-H, 23-H, 23-H, 26-H and 27-H), 1.36-1.43 (2 H, m, 22-H and 27-H), 1.16–1.31 [12 H, m, 18-H, 28-H, 28-H and Si(CH₂CH₃)₃], 1.15 $(3 \text{ H}, d, J 6.8 \text{ Hz}, 10\text{-C}H_3), 1.08 [9 \text{ H}, t, J 7.9 \text{ Hz}, Si(CH_2CH_3)_3],$ 1.01 [9 H, t, J 7.9 Hz, Si(CH₂CH₃)₃], 0.86–0.91 [9 H, m, 28-CH₃ and $Si(CH_2CH_3)_3$, 0.70 [6 H, q, J 7.9 Hz, $Si(CH_2CH_3)_3$], 0.62– 0.66 [6 H, m, Si(CH_2CH_3)₃]; δ_C (150 MHz, C_6D_6) 159.6, 139.5, 135.6, 132.2, 131.8, 129.4, 129.1, 116.1, 114.0, 113.9, 99.8, 82.6, 79.1, 76.0, 74.5, 74.3, 72.7, 71.0, 69.1, 67.6, 54.7, 43.0, 39.1, 35.1, 31.8, 31.4, 28.3, 28.0, 25.9, 23.3, 18.3, 15.8, 14.3, 7.7, 7.5, 7.2, 6.2, 5.9, 5.3; HRMS (ES⁺) m/z calc. for $C_{62}H_{107}^{79}BrO_{10}Si_3Na$ ([MNa⁺]): 1197.6247, found 1197.6265.

Vinyl iodide 129

To a stirred solution of NaI (25.75 g, 171.8 mmol) in acetonitrile (200 mL) were added TMSCl (21.8 mL, 171.8 mmol) and water (1.86 mL, 103.1 mmol) sequentially at room temperature. After 10 min, propargyl alcohol (5.0 mL, 85.9 mmol) was added in one portion. After a further 90 min at room temperature, the mixture was diluted with water (500 mL), and then partitioned between Et_2O (500 mL) and 5% aq. $Na_2S_2O_3$ (500 mL). The layers were separated, and the aqueous layer was extracted with Et₂O $(3 \times 500 \text{ mL})$. The combined organic layers were dried (MgSO₄), filtered and concentrated in vacuo (60 mmHg/25 °C), to give crude 2-iodoprop-2-en-1-ol (128)⁴⁹ as an orange oil. To a stirred solution of the crude alcohol in THF (100 mL) were added imidazole (14.62 g, 214.7 mmol) and TESC1 (17.45 mL, 103.1 mmol) sequentially at room temperature. After a further 90 min, the mixture was quenched by the addition of water (100 mL). The mixture was then partitioned between Et₂O (400 mL) and 5% aq. Na₂S₂O₃ (400 mL). The layers were separated, and the aqueous layer was extracted with Et₂O (2×300 mL). The combined organic layers were washed with brine (1 \times 300 mL), dried (MgSO₄), filtered and concentrated in vacuo. The residue was purified by flash chromatography on silica gel (gradient: 1–5% CH₂Cl₂ in hexanes) to give 129 (11.53 g, 45% for two steps) as a colourless oil. $R_f = 0.24$ (silica gel, 99 : 1 hexanes–CH₂Cl₂); $v_{\text{max}}/\text{cm}^{-1}$ (film) 2955, 2877, 1627, 1412, 1133, 1009, 898; $\delta_{\rm H}$ (500 MHz, CDCl₃) 6.44 (1 H, app q, J 1.8 Hz, 6=CH₂), 5.80 (1 H, app q, J 1.6 Hz, 6=CH₂), 4.18 (2 H, dd, J 1.8, 1.6 Hz, 7-H and 7-H), 0.97 [9 H, t, J 7.9 Hz, Si(CH₂CH₃)₃], 0.63 [6 H, q, J 7.9 Hz, Si(CH₂CH₃)₃]; $\delta_{\rm C}$ (125 MHz, CDCl₃) 122.8, 109.6, 70.7, 6.7, 4.4; MS (ES⁺) m/zcalc. for C₉H₂₀IOSi ([MH]⁺): 299.0, found: 299.1.

Diene 130

Method A – Stille coupling. To a stirred solution of iodide **129** (72 mg, 0.241 mmol) and PdCl₂(PPh₃)₂ (5.1 mg, 0.007 mmol) in THF (4 mL) was added a solution of stannane **121** (188 mg,

0.29 mmol) in THF (1 mL) in one portion at room temperature. The mixture was stirred for 6 h at room temperature, then warmed to 60 °C for a further 18 h. After cooling to room temperature, the mixture was diluted with Et_2O (50 mL), and washed with water (1 × 10 mL) and brine (1 × 10 mL). The organic layer was dried (MgSO₄), filtered and concentrated *in vacuo*. The residue was purified by flash chromatography on silica gel (15% EtOAc in hexanes) to give **130** (36 mg, 28%) as a colourless oil.

Method B – alkyne reduction. A solution of alkyne **131** (1.81 g, 3.44 mmol) in Et₂O (15 mL) was added dropwise over 10 min to a stirred solution of Red-Al® (4.13 mL, 3.33 M in toluene, 13.74 mmol) at 0 °C. After 50 min the reaction was quenched by the cautious addition of water (10 mL). The mixture was then diluted with Et₂O (50 mL) and sat. aq. Rochelle's salt (100 mL), and stirred vigorously at room temperature for 30 min. The mixture was then washed with brine (1 × 50 mL). The aqueous layer was extracted with EtOAc (3 × 50 mL), and the combined organic layers were washed with brine (1 × 50 mL), dried (MgSO₄), filtered and concentrated *in vacuo*. The residue was purified by flash chromatography on silica gel (gradient: 10–12% EtOAc in hexanes) to give **130** (1.78 g, 98%) as a colourless oil.

Data for compound 130. $R_{\rm f}=0.13$ (silica gel, 9 : 1 hexanes–EtOAc); $[a]_{\rm D}^{25}-5.9^{\circ}$ (c 0.51 in CHCl₃); $\nu_{\rm max}/{\rm cm}^{-1}$ (film) 3460, 3028, 2956, 1604, 1451, 1238, 1014, 820; $\delta_{\rm H}$ (500 MHz, CDCl₃) 7.43–7.44 (6 H, m, ArH), 7.29–7.32 (6 H, m, ArH), 7.22–7.25 (3 H, m, ArH), 6.24 (1 H, d, J 16.2 Hz, 5-H), 5.54 (1 H, dd, J 16.2, 6.0 Hz, 4-H), 5.30 (1 H, s, 6=CH₂), 5.06 (1 H, s, 6=CH₂), 4.27–4.30 (1 H, m, 3-H), 4.24 (1 H, d, J 14.1 Hz, 7-H), 4.21 (1 H, d, J 14.1 Hz, 7-H), 3.18 (1 H, dd, J 9.2, 4.3 Hz, 1-H), 3.11 (1 H, dd, J 9.2, 7.4 Hz, 1-H), 2.83 (1 H, d, J 5.4 Hz, OH), 2.04–2.08 (1 H, m, 2-H), 0.97 [9 H, t, J 7.9 Hz, Si(CH₂CH₃)₃], 0.90 (3 H, d, J 7.0 Hz, 2-CH₃), 0.63 [6 H, q, J 7.9 Hz, Si(CH₂CH₃)₃]; $\delta_{\rm C}$ (125 MHz, CDCl₃) 144.0, 143.7, 130.3, 128.8, 128.5, 127.9, 127.1, 114.2, 87.1, 75.2, 66.6, 62.4, 39.1, 12.0, 6.8, 4.4; HRMS (MALDI-FTMS) m/z calc. for C₃₄H₄₄O₃SiNa ([MNa]⁺): 551.2952, found: 551.2944.

Enyne 131

To a stirred solution of alkyne 120 (1.98 g, 5.55 mmol) and iodide 129 (2.15 g, 7.22 mmol) in THF (60 mL) were added Et₃N (7.74 mL, 55.5 mmol), PdCl₂(PPh₃)₂ (72 mg, 0.28 mmol) and CuI (106 mg, 0.56 mmol) sequentially at room temperature. After 3.5 h the mixture was partitioned between Et₂O (100 mL) and brine (100 mL). The layers were separated, and the aqueous layer was extracted with Et₂O (2 \times 100 mL). The combined organic layers were dried (MgSO₄), filtered and concentrated in vacuo. The residue was purified by flash chromatography on silica gel (gradient: 9–15% EtOAc in hexanes) to give **131** (1.87 g, 64%) as a colourless oil. $R_f = 0.16$ (silica gel, 9 : 1 hexanes–EtOAc); $[a]_D^{25}$ $+29.1^{\circ}$ (c 1.86 in CHCl₃); $v_{\text{max}}/\text{cm}^{-1}$ (film) 3446, 3062, 2958, 2241, 1619, 1451, 1119, 815; $\delta_{\rm H}$ (400 MHz, CDCl₃) 7.43–7.45 (6 H, m, ArH), 7.29–7.33 (6 H, m, ArH), 7.25–7.26 (3 H, m, ArH), 5.61 (1 H, app q, J 2.0 Hz, 6=C H_2), 5.38 (1 H, app q, J 1.8 Hz, 6=C H_2), 4.62 (1 H, dd, J 7.9, 3.6 Hz, 3-H), 4.07 (2 H, dd, J 2.0, 1.8 Hz, 7-H and 7-H), 3.49 (1 H, d, J 7.9 Hz, OH), 3.31 (1 H, t, J 9.2 Hz, 1-H), 3.25 (1 H, dd, J 9.2, 4.4 Hz, 1-H), 2.24–2.31 (1 H, m, 2-H), 0.98 [9 H, t, J 7.9 Hz, Si(CH₂CH₃)₃], 0.90 (3 H, d, J 7.0 Hz, 2- CH_3), 0.64 [6 H, q, J 7.9 Hz, $Si(CH_2CH_3)_3$]; δ_C (100 MHz, $CDCl_3$) 143.6, 130.3, 128.6, 127.9, 127.1, 119.4, 89.2, 87.5, 83.7, 66.8, 66.6, 64.5, 39.1, 13.0, 6.8, 4.4; HRMS (MALDI-FTMS) *m/z* calc. for C₃₄H₄₂O₃SiNa ([MNa]⁺): 549.2795, found: 549.2799.

Diol 134

To a stirred solution of allylic alcohol 116 (0.232 g, 0.45 mmol) in THF (5 mL) was added TBAF (0.68 mL, 1.0 M in THF, 0.68 mmol) at 0 °C. The reaction was allowed to warm to room temperature over 1 h before being quenched by the addition of sat. aq. NH₄Cl (20 mL). The mixture was extracted with EtOAc $(4 \times 15 \text{ mL})$ and the combined organic layers were washed with brine (1 × 20 mL), dried (MgSO₄), filtered and concentrated in vacuo. The residue was purified by flash chromatography on silica gel (60% Et₂O in hexanes) to give **134** (0.149 g, 83%) as a viscous, colourless oil. $R_f = 0.05$ (silica gel, 1 : 1 hexanes–EtOAc); $[a]_D^{25}$ -21.5° (c 4.8 in CHCl₃); $v_{\text{max}}/\text{cm}^{-1}$ (film) 3374, 2959, 2871, 1611, 1384, 1123, 821; $\delta_{\rm H}$ (500 MHz, CDCl₃) 7.25 (2 H, d, J 8.4 Hz, ArH), 6.87 (2 H, d, J 8.4 Hz, ArH), 5.92 (1 H, s, $6=CH_2$), 5.53 (1 H, s, 6=CH₂), 5.25 (1 H, d, J 9.0 Hz, 11-H), 4.58 (1 H, d, J 10.9 Hz, OCH₂Ar), 4.41 (1 H, d, J 10.9 Hz, OCH₂Ar), 4.32–4.33 $(1 \text{ H}, \text{ m}, 7 \text{-H}), 3.96 (2 \text{ H}, \text{ s}, 13 \text{-H} \text{ and } 13 \text{-H}), 3.79 (3 \text{ H}, \text{ s}, \text{ArOC} H_3),$ 3.59–3.61 (1 H, m, 9-H), 2.83–2.92 (3 H, m, 10-H, OH and OH), 1.80–1.91 (2 H, m, 8-H and 8-H), 1.68 (3 H, s, 12-CH₃), 1.00 (3 H, d, J 6.8 Hz, 10-C H_3); $\delta_{\rm C}$ (125 MHz, CDCl₃) 159.2, 136.7, 135.7, 130.2, 129.4, 127.5, 116.2, 113.8, 79.1, 73.4, 71.4, 68.4, 55.2, 34.9, 34.0, 14.9, 14.0; HRMS (ES⁺) m/z calc. for $C_{19}H_{27}^{79}BrO_4Na$ ([MNa]⁺): 421.0985, found: 421.0974.

Alkene 135

To a stirred solution of allylic alcohol **116** (0.175 g, 0.34 mmol) and imidazole (0.069 g, 1.0 mmol) in CH₂Cl₂ (6.0 mL) was added TBSCl (0.105 g, 0.68 mmol) in one portion at room temperature. After 1.5 h, the reaction was quenched by the addition of sat. ag. NH₄Cl (25 mL), and the mixture was extracted with Et₂O (3 \times 15 mL). The combined organic layers were washed with brine (1 \times 25 mL), dried (MgSO₄), filtered and concentrated in vacuo. The residue was purified by flash chromatography on silica gel (10% Et₂O in hexanes) to give 135 (0.207 g, 97%) as a colourless oil. $R_{\rm f} = 0.65$ (silica gel, 4 : 1 hexanes–EtOAc); $[a]_{\rm D}^{25} - 16.8^{\circ}$ (c 7.4 in CHCl₃); v_{max}/cm^{-1} (film) 2947, 2853, 1615, 1387, 1248, 1081, 891; $\delta_{\rm H}$ (500 MHz, CDCl₃) 7.29 (2 H, d, J 8.6 Hz, ArH), 6.88 (2 H, d, J 6.8 Hz, ArH), 5.82 (1 H, s, 6=CH₂), 5.47 (1 H, d, J 1.5 Hz, 6=CH₂), 5.31 (1 H, d, J 9.2 Hz, 11-H), 4.59 (1 H, d, J 11.0 Hz, OCH₂Ar), 4.41 (1 H, d, J 11.0 Hz, OCH₂Ar), 4.30 (1 H, dd, J 8.8, 3.1 Hz, 7-H), 4.02 (2 H, s, 13-H and 13-H), 3.81 (3 H, s, ArOC H_3), 3.50-3.52 (1 H, m, 9-H), 2.86-2.89 (1 H, m, 10-H), 1.75 (1 H, ddd, J 14.1, 8.8 and 3.2 Hz, 8-H), 1.69 (1 H, ddd, J 14.1, 8.4 and 3.1 Hz, 8-H), 1.64 (3 H, s, 12-CH₃), 0.98 (3 H, d, J 6.9 Hz, 10-CH₃), 0.97 [9 H, s, SiC(CH_3)₃], 0.92 [9 H, s, SiC(CH_3)₃], 0.08 (3 H, s, SiC H_3), $0.08 (3 \text{ H, s, SiC}H_3), 0.06 (3 \text{ H, s, SiC}H_3), 0.05 (3 \text{ H, s, SiC}H_3); \delta_C$ (125 MHz, CDCl₃) 159.0, 139.0, 134.9, 131.2, 128.9, 126.3, 116.1, 113.7, 78.7, 73.9, 70.6, 68.4, 55.3, 38.6, 33.8, 26.0, 25.8, 18.4, 18.1, 14.9, 13.6, -4.4, -5.0, -5.1, -5.2; HRMS (ES⁺) m/z calc. for $C_{31}H_{55}^{79}BrO_4Si_2Na$ ([MNa]⁺): 649.2714, found: 649.2721.

Acknowledgements

We thank Dr D. H. Huang and Dr G. Siuzdak for NMR spectroscopic and mass spectrometric assistance, respectively. Financial support for this work was provided by the National Institutes of Health (USA) and The Skaggs Institute for Chemical Biology, and a predoctoral fellowship from the National Science Foundation (USA) (to W. E. B.).

References

- 1 For reviews, see: J. W. Blunt, B. R. Copp, M. H. G. Munro, P. T. Northcote and M. R. Prinsep, *Nat. Prod. Rep.*, 2005, **22**, 15–61 and refs. cited therein.
- 2 Y. Shimizu, *Chem. Rev.*, 1993, **93**, 1685–1698; J. Kobayashi and M. Ishibashi, *Chem. Rev.*, 1993, **93**, 1753–1769.
- 3 J. Kobayashi and M. Tsuda, *Nat. Prod. Rep.*, 2004, **21**, 77–93; J. Kobayashi and M. Ishibashi, in *Comprehensive Natural Products Chemistry*, ed. K. Mori, Elsevier, New York, 1999, vol. 8, pp. 619–634; M. Ishibashi and J. Kobayashi, *Heterocycles*, 1997, **44**, 543–572.
- 4 Amphidinolide A: B. M. Trost, P. E. Harrington, J. D. Chisholm and S. T. Wrobleski, J. Am. Chem. Soc., 2005, 127, 13 598–13 610; B. M. Trost, S. T. Wrobleski, J. D. Chisholm, P. E. Harrington and M. Jung, J. Am. Chem. Soc., 2005, 127, 13 589–13 597; B. M. Trost and P. E. Harrington, J. Am. Chem. Soc., 2004, 126, 5028–5029; B. M. Trost, J. D. Chisholm, S. J. Wrobleski and M. Jung, J. Am. Chem. Soc., 2002, 124, 12 420–12 421; R. E. Maleczka, L. R. Terrell, F. Geng and J. S. Ward, Org. Lett., 2002, 4, 2841–2844; H. W. Lam and G. Pattenden, Angew. Chem., Int. Ed., 2002, 41, 508–511.
- 5 Amphidinolide J. D. R. Williams and W. S. Kissel, *J. Am. Chem. Soc.*, 1998, **120**, 11 198–11 199.
- 6 Amphidinolide K: D. R. Williams and K. G. Meyer, J. Am. Chem. Soc., 2001, 123, 765–766.
- 7 Amphidinolide P. B. M. Trost, J. P. N. Papillon and T. Nussbaumer, J. Am. Chem. Soc., 2006, 127, 17921–17937; B. M. Trost and J. P. N. Papillon, J. Am. Chem. Soc., 2004, 126, 13618–13619; D. R. Williams, B. J. Myers and L. Mi, Org. Lett., 2000, 2, 945–948.
- 8 Amphidinolide T. E. A. Colby, K. C. O'Brien and T. F. Jamison, J. Am. Chem. Soc., 2005, 127, 4297–4307; E. A. Colby, K. C. O'Brien and T. F. Jamison, J. Am. Chem. Soc., 2004, 126, 998–999; C. Aïssa, R. Riveiros, J. Ragot and A. Fürstner, J. Am. Chem. Soc., 2003, 125, 15 512–15 520; A. K. Ghosh and C. Liu, J. Am. Chem. Soc., 2003, 125, 2374–2375; A. Fürstner, C. Aïssa, R. Riveiros and J. Ragot, Angew. Chem., Int. Ed., 2002, 41, 4763–4766.
- 9 Amphidinolide W: A. K. Ghosh and G. Gong, *J. Am. Chem. Soc.*, 2004, **126**, 3704–3705.
- 10 J. A. Marshall, G. Schaaf and A. Nolting, Org. Lett., 2005, 7, 5331-5333; F. P. Liesener and M. Kalesse, Synlett, 2005, 2236-2238; T. Andreoa, A. M. Costa, L. Esteban, L. Gonzalez, G. Mas and J. Vilarrasa, Org. Lett., 2005, 7, 4083–4086; W. Zhang and R. G. Carter, Org. Lett., 2005, 7, 4209-4212; A. K. Mandal, J. S. Schneekloth and C. M. Crews, Org. Lett., 2005, 7, 3645–3648; K. C. O'Brien, E. A. Colby and T. F. Jamison, Tetrahedron, 2005, 61, 6243-6248; M. K. Gurjar, S. Mohapatra, U. D. Phalgune, V. G. Puranik and D. K. Mohapatra, Tetrahedron Lett., 2004, 45, 7899-7902; B. J. Shotwell and W. R. Roush, Org. Lett., 2004, 6, 3865–3868; W. Zhang, R. G. Carter and A. F. T. Yokochi, J. Org. Chem., 2004, 69, 2569-2572; J.-H. Pang, Y.-J. Ham and D.-Y. Lee, Bull. Korean Chem. Soc., 2003, 24, 891–892; T. Kubota, M. Tsuda and J. Kobayashi, Tetrahedron, 2003, 59, 1613-1625; J.-H. Pang and D.-H. Lee, Bull. Korean Chem. Soc., 2002, 23, 1173-1176; T. K. Chakraborty, Tetrahedron Lett., 2001, 42, 3387-3390; M. B. Cid and G. Pattenden, Tetrahedron Lett., 2000, 41, 7373-7378; D.-H. Lee and M.-D. Rho, Tetrahedron Lett., 2000, 41, 2573–2576; T. K. Chakraborty and S. Das, Chem. Lett., 2000, 80-81; D. R. Williams and K. G. Meyer, Org. Lett., 1999, 1, 1303–1305; K. Ohi and S. Nishiyama, Synlett, 1999, 573-575; K. Ohi and S. Nishiyama, Synlett, 1999, 571-572; H. Ishiyama, T. Takemura, M. Tsuda and J. Kobayashi, J. Chem. Soc., Perkin Trans. 1, 1999, 1163-1166; H. Ishiyama, T. Takemura, M. Tsuda and J. Kobayashi, Tetrahedron, 1999, 55, 4583-4595; L. R. Terrell and J. S. Ward, *Tetrahedron Lett.*, 1999, 40, 3097–3100; H. M. Eng and D. C. Myles, Tetrahedron Lett., 1999, 40, 2275-2278; H. M. Eng and D. C. Myles, Tetrahedron Lett., 1999, 40, 2279-2282; T. K.

- Chakraborty and D. Thippeswamy, Synlett, 1999, 150-152; T. K. Chakraborty and V. R. Suresh, Tetrahedron Lett., 1998, 39, 9109–9112; T. K. Chakraborty and V. R. Suresh, Tetrahedron Lett., 1998, 39, 7775-7778; K. Ohi, K. Shima, K. Hamada, Y. Saito, N. Yamada, S. Ohba and S. Nishiyama, Bull. Chem. Soc. Jpn., 1998, 71, 2433-2440; B. M. Cid and G. Pattenden, Synlett, 1998, 540-542; D.-H. Lee and M.-D. Rho, Bull. Korean Chem. Soc., 1998, 19, 386-390; G. J. Hollingworth and G. Pattenden, Tetrahedron Lett., 1998, 39, 703-706; J. Kobayashi, A. Hatakeyama and M. Tsuda, Tetrahedron, 1998, 54, 697–704; M. Tsuda, A. Hatakeyama and J. Kobayashi, J. Chem. Soc., Perkin Trans. 1, 1998, 149–156; D.-H. Lee and S.-K. Lee, Tetrahedron Lett., 1997, 7909-7910; T. K. Chakraborty and V. R. Suresh, Chem. Lett., 1997, 565-566; T. K. Chakraborty, D. Thippeswamy, V. R. Suresh and S. Jayaprakash, Chem. Lett., 1997, 563-564; H. Ishiyama, M. Ishibashi and J. Kobayashi, Chem. Pharm. Bull., 1996, 44, 1819-1822; C. Boden and G. Pattenden, Synlett, 1994, 181-182; S. J. O'Conner and P. G. Williard, Tetrahedron Lett., 1989, 30, 4637-4640.
- 11 M. Ishibashi, N. Yamaguchi, T. Sasaki and J. Kobayashi, J. Chem. Soc., Chem. Commun., 1994, 1455-1456.
- 12 J. Pietruszka, Angew. Chem., Int. Ed., 1998, 37, 2629-2636.
- 13 I. Bauer, L. Maranda, K. A. Young, Y. Shimizu, C. Fairchild, L. Cornell, J. MacBeth and S. Huang, J. Org. Chem., 1995, 60, 1084–1086.
- 14 Y. Shimizu, personal communication.
- 15 K. C. Nicolaou, P. G. Bulger and W. E. Brenzovich, Org. Biomol. Chem., 2006, DOI: 10.1039/b602021f.
- 16 S. T. Diver and A. J. Giessert, Synthesis, 2004, 466-471; R. Stragies, M. Schuster and S. Blechert, Angew. Chem., Int. Ed. Engl., 1997, 36, 2518-2520.
- 17 E. C. Hansen and D. Lee, J. Am. Chem. Soc., 2004, 126, 15 074–15 080; E. C. Hansen and D. Lee, J. Am. Chem. Soc., 2003, 125, 9582-9583.
- 18 K. C. Nicolaou, P. G. Bulger and D. Sarlah, Angew. Chem., Int. Ed., 2005, 44, 4490-4527.
- 19 D. Enders, M. Voith and A. Lenzen, Angew. Chem., Int. Ed., 2005, 44, 1304-1325; D. Enders, M. Voith and S. J. Ince, Synthesis, 2002, 1775-1779; A. Job, C. F. Janeck, W. Bettray, R. Peters and D. Enders, Tetrahedron, 2002, 58, 2253-2329.
- 20 D. Xing, P. Chen, R. Keil, C. D. Kilts, B. Shi, V. M. Camp, G. Malveaux, T. Ely, M. J. Owens, J. Votaw, M. Davis, J. M. Hoffman, R. A. E. BaKay, T. Subramanian, R. L. Watts and M. M. Goodman, J. Med. Chem., 2000. **43**. 639–648.
- 21 A. Ahmed, E. K. Hoegenauer, V. S. Enev, M. Hanbauer, H. Kaehlig, E. Öhler and J. Mulzer, J. Org. Chem., 2003, 68, 3026–3042.
- 22 G. E. Keck and E. P. Boden, Tetrahedron Lett., 1984, 25, 265-268.
- 23 H. C. Brown and P. K. Jadhav, J. Am. Chem. Soc., 1983, 105, 2092–2093.
- 24 O. H. Gringore and F. P. Rouessac, Org. Synth., 1985, 63, 121-126.
- 25 C. Eguchi and A. Kakuta, Bull. Chem. Soc. Jpn., 1974, 47, 1704-1708.
- 26 M. Larchevêque and J. Lalande, J. Chem. Soc., Chem. Commun., 1985, 83-84.
- 27 M. Chérest, H. Felkin and N. Prudent, Tetrahedron Lett., 1968, 2199-2204; N. T. Anh, Top. Curr. Chem., 1980, 88, 145-162.
- 28 A. N. Rai and A. Basu, Tetrahedron Lett., 2003, 44, 2267-2269.
- 29 C. H. Larsen, B. H. Ridgway, J. T. Shaw, D. M. Smith and K. A. Woerpel, J. Am. Chem. Soc., 2005, 127, 10879-10884; M. F. Buffet, D. J. Dizon, S. V. Ley, D. J. Reynolds and R. I. Storer, Org. Biomol. Chem., 2004, 2, 1145-1154.

- 30 K. E. Drouet and E. A. Theodorakis, Chem.-Eur. J., 2000, 6, 1987-2001
- 31 K. Matsumura, S. Hashiguchi, T. Ikariya and R. Noyori, J. Am. Chem. Soc., 1997, 119, 8738-8739; K.-J. Haack, S. Hashiguchi, A. Fujii, T. Ikariya and R. Noyori, Angew. Chem., Int. Ed. Engl., 1997, 36, 285–288; S. Hashiguchi, A. Fujii, K.-J. Haack, K. Matsumura, T. Ikariya and R. Noyori, Angew. Chem., Int. Ed. Engl., 1997, 36, 288-
- 32 P. Soucy, A. L'Heureux, A. Toró and P. Deslongchamps, J. Org. Chem., 2003, 68, 9983-9987.
- 33 J. C. Anderson, B. P. McDermott and E. J. Griffin, *Tetrahedron*, 2000, **56**, 8747–8767.
- 34 D. Enders, T. Hundertmark and R. Lazny, Synlett, 1998, 721-722.
- 35 M. Scholl, S. Ding, C. W. Lee and R. H. Grubbs, Org. Lett., 1999, 1, 953-956
- 36 M. Mori, N. Sakakibara and A. Kinoshita, J. Org. Chem., 1998, 63, 6082-6083.
- 37 S. S. Salim, R. K. Bellingham and R. C. D. Brown, Eur. J. Org. Chem., 2004, 800-806
- 38 J. Inanaga, K. Hirata, H. Saeki, T. Katsuki and M. Yamaguchi, Bull. Chem. Soc. Jpn., 1979, 52, 1989–1993.
- 39 R. R. Schrock, J. S. Murdzek, G. C. Bazan, J. Robbins, M. DiMare and M. O'Regan, J. Am. Chem. Soc., 1990, 112, 3875–3886.
- 40 S. V. Ley, J. Norman, W. P. Griffith and S. P. Marsden, Synthesis, 1994, 639-666; W. P. Griffith, S. V. Ley, G. P. Whitcombe and A. D. White, J. Chem. Soc., Chem. Commun., 1987, 1625-1627.
- 41 V. Farina and V. Krishnamurthy, Org. React., 1997, 50, 1-652; J. K. Stille, Angew. Chem., Int. Ed. Engl., 1986, 25, 508-524.
- 42 A. B. Smith, P. A. Levenberg, P. J. Jerris, R. M. Scarborough and P. M. Wovkulich, J. Am. Chem. Soc., 1981, 103, 1501-1513; R. H. Baker, S. W. Tinsley, D. Butler and B. Riegel, J. Am. Chem. Soc., 1950, 72, 393-395
- 43 D. Crich, X.-Y. Jiao and M. Bruncko, Tetrahedron, 1997, 53, 7127-
- 44 K. Nagasawa, H. Ishihara, Y. Zako and I. Shimizu, J. Org. Chem., 1993, **58**, 2523-2529.
- 45 H. C. Brown and K. S. Bhat, J. Am. Chem. Soc., 1986, 108, 5919-5923
- 46 N. Nakajima, K. Horita, R. Abe and O. Yonemitsu, Tetrahedron Lett., 1988, **29**, 4139–4142.
- 47 T. Bach and S. Heuser, Chem.-Eur. J., 2002, 8, 5585-5592.
- 48 H. X. Zhang, F. Guibé and G. Balavoine, J. Org. Chem., 1990, 55, 1857-1867; K. C. Nicolaou, K. C. Fylaktakidou, H. Monenschein, Y. Li, B. Weyershausen, H. J. Mitchell, H. Wei, P. Guntupalli, D. Hepworth and K. Sugita, J. Am. Chem. Soc., 2003, 125, 15 433-15 442
- 49 N. Kamiya, Y. Chikami and Y. Ishii, Synlett, 1990, 675-676.
- 50 K. Sonogashira, Y. Tohda and N. Hagihara, Tetrahedron Lett., 1975, 4467-4470; H. A. Dieck and F. R. Heck, J. Organomet. Chem., 1975, 93, 259-263; L. Cassar, J. Organomet. Chem., 1975, 93, 253-
- 51 H. Suzuki, M. Aihara, H. Yamamoto, Y. Takamoto and T. Ogawa, Synthesis, 1988, 236-238.
- 52 Y. Segall, E. C. Kimmel, D. R. Dohn and J. E. Casida, Mutat. Res., 1985, 158, 61-68.
- 53 M. G. Organ and J. Wang, J. Org. Chem., 2003, 68, 5568-5574.